

ISSN 2226-2008

ОДЕСЬКИЙ МЕДИЧНИЙ ЖУРНАЛ

№ 5 (196)/2025

ISSN 2226-2008

ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ

ОДЕСЬКИЙ МЕДИЧНИЙ ЖУРНАЛ

№ 5 (196)

Видавничий дім
«Гельветика»
2025

Рішення Національної ради України з питань телебачення і радіомовлення
№ 37 від 11.01.2024. Протокол № 1 і № 1764 від 24.05.2024. Протокол № 16. Ідентифікатор медіа: R30-02554.

Суб'єкт у сфері друкованих медіа – Одеський національний медичний університет
(prov. Валіховський, буд. 2, м. Одеса, 65082, адреса електронної пошти: rector@onmedu.edu.ua. Тел.: (048) 723-42-49).

«Одеський медичний журнал» включений до Переліку наукових фахових видань України в категорії «А»
(галузь – медичні науки, спеціальності – 221 «Стоматологія», 222 «Медицина», 226 «Фармація, промислова фармація»,
228 «Педіатрія») згідно з наказом Міністерства освіти і науки України №1721 від 10.12.2024, (додаток 6)
Включено до наукометричної бази Scopus з 25.11.2023 (<https://www.scopus.com/sourceid/21101200961>)
Засновник – Одеський національний медичний університет.

Виходить 6 разів на рік. Мови публікацій: українська, англійська.

Одеський медичний журнал

№ 5 (196) 2025

Заснований у 1926 році, поновлений у 1997 році

Головний редактор

Академік НАМН України, лауреат Державної премії України,
доктор медичних наук, професор В. М. ЗАПОРОЖАН

Науковий редактор

Професор П. Б. АНТОНЕНКО

Відповідальні секретарі

Доцент І. В. ЙОРЧЕНКО, доцент А. В. ГРЕКОВА

Редакційна колегія

П. Б. Антоненко, М. Л. Аряев, Фуркан Аяз, В. О. Гельмбольдт, Л. С. Годлевський, М. Я. Головенко, В. Н. Горохівський,
Б. П. Громовик, В. В. Грубник, О. В. Деньга, М. М. Лебедюк, В. Г. Марічера, С. М. Марчишин, В. В. Ніколаєвський, Я. В. Рожковський,
Нінель Ревенко, Г. С. Сенаторова, А. С. Сон, Л. М. Унгурян, С. А. Шнайдер

Редакційна рада

П.-А. Абрахамсон – Університетська клініка Лундського університету (Швеція), А. Борткієвіч – Інститут медицини праці ім. Нофера (Лодзь, Польща), І. І. Гук – Віденський медичний університет (Австрія), М. П. Ландіні – Болонський університет (Італія), В. Скрипаріу – Університет медицини та фармації імені Г. Попа (Ясси, Румунія), Д. Уїтлі – BioMedES (Велика Британія), Р. Хусс – Університетська клініка Аугсбургського університету (Німеччина), В. Чупіна – Університет «Овідіус» (Констанца, Румунія)

Друкується за рішенням Вченого ради Одеського національного медичного університету,
протокол № 6 від 02.12.2025 р.

(http://journal.odmu.edu.ua/?page_id=18)

ISSN 2226-2008

THE ODESA NATIONAL MEDICAL UNIVERSITY

ODES'KIJ MEDICNIJ ZURNAL

№ 5 (196)

Publishing House
“Helvetica”
2025

Decisions of the National Council of Television and Radio Broadcasting of Ukraine
№ 37 from 11.01.2024. Protocol № 1 and № 1764 from 24.05.2024. Protocol № 16. Media ID: R30-02554.

Media entity – Odesa National Medical University
(Valikhovsky Lane, 2, Odesa, 65082, e-mail: rector@onmedu.edu.ua. Tel: (048) 723-42-49).

“Odesa Medical Journal” is included in the List of specialized scientific publications of Ukraine of category “A”
(branch – medical sciences, specialties – 221 “Dentistry”, 222 “Medicine”, 226 “Pharmacy, industrial pharmacy”, 228 “Pediatrics”)
according to the Order of the Ministry of Education and Science of Ukraine No. 1721 dated 10.12.2024 (appendix 6).

It is accepted for coverage in Scopus database since November, 25, 2023 (<https://www.scopus.com/sourceid/21101200961>)

The founder of “Odesa Medical Journal” is the Odesa National Medical University.

The journal is published 6 times a year. Languages: Ukrainian, English.

Odes'kij medicnij zurnal

№ 5 (196) 2025

Founded in 1926, refounded in 1997

Editor-in-chief

Academician of NAMS of Ukraine, the Ukraine State Prize Winner,
MD, Professor V. M. ZAPOROZHAN

Science Editor

Professor P. B. ANTONENKO

Executive Secretary

Associate Professor I. V. YURCHENKO, Associate Professor A. V. GREKOVA

Editorial Board

P. B. Antonenko, M. L. Ariaiev, Furkan Ayaz, V. O. Helmboldt, L. S. Hodlevskyi, M. Ya. Holovenko, V. N. Horokhivskyi, B. P. Hromovyyk, V. V. Hrubnik, O. V. Denha, M. M. Lebedyuk, V. G. Marichereda, S. M. Marchyshyn, V. V. Nikolaievskyi, Ya. V. Rozhkovskyi, Ninel Revenco, G. S. Senatorova, A. S. Son, L. M. Unhurian, S. A. Shnaider

Editorial Council

P.-A. Abrahamsson – Lund University Hospital (Sweden), A. Bortkiewicz – Nofer Institute of Occupational Medicine (Lodz, Poland), I. I. Guk – Medical University of Vienna (Austria), M. P. Landini – University of Bologna (Italy), R. Huss – University Hospital Augsburg (Germany), V. Ciupina – Ovidius University of Constanta (Romania)

Recommended for publication by the Odesa National Medical University Scientific Board
December 02, 2025, protocol № 6.

(http://journal.odmu.edu.ua/?page_id=18&lang=en)

ЗМІСТ

ТЕОРІЯ ТА ЕКСПЕРИМЕНТ

- A. A. Kostina, G. F. Stepanov, A. A. Dimova, Ye. Ye. Pelekhovych
THE ROLE OF THE BLOOD CELL COMPONENT IN THE FORMATION
OF MUSCLE DYSFUNCTION IN IRRADIATED OFFSPRING BORN
TO ANIMALS EXPOSED TO DIFFERENT RADIATION DOSES..... 9

КЛІНІЧНА ПРАКТИКА

- O. I. Годованець, А. В. Котельбан, М. П. Митченок, А. І. Ратушняк, О. В. Митченок
ЕСЕНЦІАЛЬНИЙ СКЛАД ПИТНИХ ВОД ЧЕРНІВЕЦЬКОЇ ОБЛАСТІ
ТА ЙОГО ВПЛИВ НА СТОМАТОЛОГІЧНЕ ЗДОРОВ'Я ДІТЕЙ..... 16
- I. A. Moldovanov, D. D. Zabolotna
EVALUATION OF RISK FACTORS FOR INTRAOPERATIVE BLEEDING
IN ENDOSCOPIC SURGERY IN PATIENTS WITH CHRONIC RHINOSINUSITIS
WITH NASAL POLYPS AND ASPIRIN-EXACERBATED RESPIRATORY DISEASE 20
- B. П. Міщенко, В. В. Міщенко
КЛІНІКО-ЛАБОРАТОРНІ ОСОБЛИВОСТІ ПЕРЕБІГУ ПЕРШОЇ ПОЛОВИНИ ВАГІТНОСТІ
В ПЕРІОД ВІЙНИ В УКРАЇНІ..... 26
- V. I. Velychko, D. O. Lahoda, Ye. O. Tuliantseva, H. O. Danylchuk,
THE EFFECT OF EDUCATION IN SELF-MANAGEMENT PRINCIPLES
ON THE QUALITY OF LIFE OF PATIENTS WITH TYPE 2 DIABETES MELLITUS..... 32
- V. I. Salnykov
POST-THERAPEUTIC ANTIOXIDANTS-ASSOCIATED CHANGES IN THE CONCENTRATION
OF INFLAMMATION AND CYTOPROTECTION MARKERS
IN THE BLOOD OF PATIENTS WITH CHRONIC GENERALISED PERIODONTITIS 40
- Н. Л. Сарафанюк, М. О. Клименко
ПРОДУКЦІЯ ІНТЕРЛЕЙКІНІВ 1В, 2, 4, 10 ТА С-РЕАКТИВНОГО БІЛКА
ПРИ ХРОНІЧНІЙ ІШЕМІЇ МОЗКУ..... 46
- I. M. Samarskyi, M. A. Kashtalian, V. O. Tsepkozenko, D. M. Davydov
APPLICATION OF PERINEURAL ADMINISTRATION OF FIBROBLASTS
AND PRP IN TOURNIQUET SYNDROME: A SURGEON'S PERSPECTIVE..... 52
- N. M. Rozhkovska, S. H. Chetverikov, M. S. Chetverikov, V. V. Chetverikova-Ovchynnyk
CHANGES OF PROTEIN EXPRESSION OF PLATINUM RESISTANCE INDICATORS UNDER
THE INFLUENCE OF HYPERTERMIA DURING THE HIPEC PROCEDURE
IN RECURRENT OVARIAN CANCER..... 56

ОГЛЯД ЛІТЕРАТУРИ

- L. I. Kolotvina, G. V. Kornovan, V. I. Synenko, A. O. Kolotvin
GASTROESOPHAGEAL REFLUX DISEASE AND CARDIOVASCULAR DISEASES:
INTERRELATION AND MUTUAL INFLUENCE (LITERATURE REVIEW)..... 61

ВИПАДОК ІЗ ЛІКАРСЬКОЇ ПРАКТИКИ

- O. P. Laver, B. M. Patskan
A CASE REPORT: ABDOMINAL WALL RECONSTRUCTION FOR A THIRD-TIME RECURRENT
GIANT VENTRAL HERNIA WITH LOSS OF DOMAIN..... 66
- O. I. Panyuta, O. M. Ignatyev, L. I. Zahorodnia, T. M. Yamilova
VENTRICULAR BIGEMINY AS A COMPLICATION OF SPIROMETRY PERFORMED
IN A PATIENT WITH A HISTORY OF WORK IN HARMFUL WORKING CONDITIONS –
A CLINICAL CASE..... 73

ФАРМАКОЛОГІЯ І ФАРМАЦІЯ

A. M. Krychkovska, N. L. Zayarnyuk, O. B. Pankevych, I. R. Buchkevych, O. I. Khomenko, V. I. Lubenets STUDY OF THE ACCESSIBILITY OF MEDICAL AND PHARMACEUTICAL CARE FOR PEOPLE WITH DISABILITIES.....	77
N. A. Tsubanova, N. I. Voloshchuk, H. B. Halevych EFFECT OF TAGETES PATULA L. EXTRACT ON LIVER AND PANCREAS HISTOSTRUCTURE IN MODELS OF ETHANOL-PARACETAMOL- INDUCED HEPATITIS AND STREPTOZOTOCIN-INDUCED DIABETES IN RATS.....	83
Л. В. Еберле, К. Д. Сазонов, Я. В. Рожковський, С. І. Богату, Б. В. Приступа ФАРМАКОЛОГІЧНА АКТИВНІСТЬ 2-(ДІЕТИЛАМИНО) ЕТИЛ-4-[(11-ОКСОІНДЕНО[2,1-В] ХІНОКСАЛІН-6-КАРБОНІЛ)АМИНО]БЕНЗОАТУ ЗА ТРАНСДЕРМАЛЬНОГО ЗАСТОСУВАННЯ....	90
L. V. Slobodianuk, S. M. Marchyshyn, O. M. Horoshko, L. V. Kostyshyn, L. I. Budniak THE STUDY OF FATTY ACID COMPOSITION IN <i>RUMEX PATIENTIA</i> L. × <i>RUMEX TIANSCHANICUS</i> LOSINSK.....	96

CONTENTS

THEORY AND EXPERIMENT

- A. A. Kostina, G. F. Stepanov, A. A. Dimova, Ye. Ye. Pelekhovych
THE ROLE OF THE BLOOD CELL COMPONENT IN THE FORMATION
OF MUSCLE DYSFUNCTION IN IRRADIATED OFFSPRING BORN
TO ANIMALS EXPOSED TO DIFFERENT RADIATION DOSES..... 9

CLINICAL PRACTICE

- O. I. Godovanets, A. V. Kotelban, M. P. Mytchenok, A. I. Ratushniak, O. V. Mytchenok
THE ESSENTIAL COMPOSITION OF DRINKING WATER OF THE CHERNIVTSI REGION
AND ITS EFFECT ON THE DENTAL HEALTH OF CHILDREN..... 16
- I. A. Moldovanov, D. D. Zabolotna
EVALUATION OF RISK FACTORS FOR INTRAOPERATIVE BLEEDING
IN ENDOSCOPIC SURGERY IN PATIENTS WITH CHRONIC RHINOSINUSITIS
WITH NASAL POLYPS AND ASPIRIN-EXACERBATED RESPIRATORY DISEASE 20
- V. P. Mishchenko, V. V. Mishchenko
CLINICAL AND LABORATORY FEATURES OF THE FIRST HALF OF PREGNANCY DURING
THE WAR IN UKRAINE..... 26
- V. I. Velychko, D. O. Lahoda, Ye. O. Tuliantseva, H. O. Danylchuk,
THE EFFECT OF EDUCATION IN SELF-MANAGEMENT PRINCIPLES
ON THE QUALITY OF LIFE OF PATIENTS WITH TYPE 2 DIABETES MELLITUS..... 32
- V. I. Salnykov
POST-THERAPEUTIC ANTIOXIDANTS-ASSOCIATED CHANGES IN THE CONCENTRATION
OF INFLAMMATION AND CYTOPROTECTION MARKERS IN THE BLOOD OF PATIENTS
WITH CHRONIC GENERALISED PERIODONTITIS 40
- N. L. Sarafanyuk, M. O. Klymenko
PRODUCTION OF INTERLEUKINS 1B, 2, 4, 10 AND C-REACTIVE PROTEIN
IN CHRONIC CEREBRAL ISCHEMIA..... 46
- I. M. Samarskyi, M. A. Kashtalian, V. O. Tsepkoenko, D. M. Davydov
APPLICATION OF PERINEURAL ADMINISTRATION OF FIBROBLASTS
AND PRP IN TOURNIQUET SYNDROME: A SURGEON'S PERSPECTIVE..... 52
- N. M. Rozhkovska, S. H. Chetverikov, M. S. Chetverikov, V. V. Chetverikova-Ovchynnyk
CHANGES OF PROTEIN EXPRESSION OF PLATINUM RESISTANCE INDICATORS UNDER
THE INFLUENCE OF HYPERTERMIA DURING THE HIPEC PROCEDURE
IN RECURRENT OVARIAN CANCER..... 56

LITERATURE REVIEW

- L. I. Kolotvina, G. V. Kornovan, V. I. Synenko, A. O. Kolotvin
GASTROESOPHAGEAL REFLUX DISEASE AND CARDIOVASCULAR DISEASES:
INTERRELATION AND MUTUAL INFLUENCE (LITERATURE REVIEW)..... 61

A CASE FROM MEDICAL PRACTICE

- O. P. Laver, B. M. Patskan
A CASE REPORT: ABDOMINAL WALL RECONSTRUCTION FOR A THIRD-TIME RECURRENT
GIANT VENTRAL HERNIA WITH LOSS OF DOMAIN..... 66
- O. I. Panyuta, O. M. Ignatyev, L. I. Zahorodnia, T. M. Yamilova
VENTRICULAR BIGEMINY AS A COMPLICATION OF SPIROMETRY PERFORMED
IN A PATIENT WITH A HISTORY OF WORK IN HARMFUL WORKING CONDITIONS –
A CLINICAL CASE..... 73

PHARMACOLOGY AND PHARMACY

A. M. Krychkovska, N. L. Zayarnyuk, O. B. Pankevych, I. R. Buchkevych, O. I. Khomenko, V. I. Lubenets STUDY OF THE ACCESSIBILITY OF MEDICAL AND PHARMACEUTICAL CARE FOR PEOPLE WITH DISABILITIES.....	77
N. A. Tsubanova, N. I. Voloshchuk, H. B. Halevych EFFECT OF TAGETES PATULA L. EXTRACT ON LIVER AND PANCREAS HISTOSTRUCTURE IN MODELS OF ETHANOL-PARACETAMOL- INDUCED HEPATITIS AND STREPTOZOTOCIN-INDUCED DIABETES IN RATS.....	83
L. V. Eberle, K. D. Sazonov, Ya. V. Rozhkovskyi, S. I. Bohatu, B. V. Prystupa PHARMACOLOGICAL ACTIVITY OF 2-(DIETHYLAMINO)ETHYL-4-[(11-OXOINDENE[2,1-B] QUINOXALINE-6-CARBONYL)AMINO]BENZOATE DURING TRANSDERMAL APPLICATION.....	90
L. V. Slobodianuk, S. M. Marchyshyn, O. M. Horoshko, L. V. Kostyshyn, L. I. Budniak THE STUDY OF FATTY ACID COMPOSITION IN <i>RUMEX PATIENTIA</i> L. × <i>RUMEX TIANSCHANICUS</i> LOSINSK.....	96

ТЕОРІЯ ТА ЕКСПЕРИМЕНТ

UDC 614.876:616-055.6:577.122:616-092.4

DOI <https://doi.org/10.32782/2226-2008-2025-5-1>

A. A. Kostina <https://orcid.org/0000-0001-7731-8015>

G. F. Stepanov <https://orcid.org/0000-0002-8242-8689>

A. A. Dimova <https://orcid.org/0000-0002-3355-6799>

Ye. Ye. Pelekhovych <https://orcid.org/0009-0000-6349-6507>

THE ROLE OF THE BLOOD CELL COMPONENT IN THE FORMATION OF MUSCLE DYSFUNCTION IN IRRADIATED OFFSPRING BORN TO ANIMALS EXPOSED TO DIFFERENT RADIATION DOSES

Odesa National Medical University, Odesa, Ukraine

UDC 614.876:616-055.6:577.122:616-092.4

A. A. Kostina, G. F. Stepanov, A. A. Dimova, Ye. Ye. Pelekhovych

THE ROLE OF THE BLOOD CELL COMPONENT IN THE FORMATION OF MUSCLE DYSFUNCTION IN IRRADIATED OFFSPRING BORN TO ANIMALS EXPOSED TO DIFFERENT RADIATION DOSES

Odesa National Medical University, Odesa, Ukraine

Radiation-induced hematological and metabolic disturbances remain insufficiently understood, particularly in the offspring of irradiated parents, despite their potential contribution to tissue dysfunction and long-term post-irradiation effects.

The aim of the work – to investigate the role of the blood cell component in the formation of muscle dysfunction in irradiated offspring born to animals irradiated at different doses.

Materials and methods. 1-month-old Wistar rats obtained from parents irradiated at 0.5 Gy and 1.0 Gy were subjected to single total-body γ -irradiation at 1.0 Gy. Hematological indices, activities of pyruvate kinase and lactate dehydrogenase, and levels of pyruvate and lactate were determined in peripheral blood, myocardium, and skeletal muscle using standard biochemical and spectrophotometric methods.

Results and discussion. Total-body γ -irradiation at 1.0 Gy reduced hemoglobin concentration and erythrocyte count in the offspring, limiting oxygen supply to tissues. Metabolic disturbances were dose-dependent and most pronounced in the progeny of animals irradiated at 1.0 Gy, showing a marked decline in pyruvate kinase activity in skeletal muscle, while myocardial changes were minor. Concurrent increases in lactate dehydrogenase activity and in lactate and pyruvate levels elevated the lactate/pyruvate ratio, indicating suppression of oxidative phosphorylation and a shift toward anaerobic glycolysis.

Conclusions. Offspring of animals irradiated at different doses exhibit dose-dependent hematological deficits and metabolic shifts, including reduced erythropoiesis, impaired oxygen-transport capacity, inhibition of substrate-level phosphorylation, and activation of anaerobic glycolysis, which may contribute to radiation-induced muscle dysfunction.

Keywords: total-body γ -irradiation, offspring of irradiated animals, blood cells, pyruvate kinase, lactate dehydrogenase.

УДК 614.876:616-055.6:577.122:616-092.4

А. А. Костіна, Г. Ф. Степанов, А. А. Дімова, Є. Є. Пелехович

РОЛЬ КЛІТИННОГО КОМПОНЕНТА КРОВІ У ФОРМУВАННІ М'ЯЗОВОЇ ДИСФУНКЦІЇ ОПРОМІНЕНІХ НАЩАДКІВ, НАРОДЖЕНИХ ВІД ОПРОМІНЕНІХ У РІЗНИХ ДОЗАХ ТВАРИН

Одеський національний медичний університет, Одеса, Україна

В експериментальному дослідженні на 1-місячних щурятах, отриманих від тварин, опромінених дозами 0,5 та 1,0 Гр, та підданих одноразовому тотальному γ -опроміненню в дозі 1,0 Гр, було з'ясовано значення клітинного складу крові у формуванні м'язової дисфункції. Встановлено, що тотальне γ -опромінення дозою 1,0 Гр призводить до зменшення кількості еритроцитів і рівня гемоглобіну в периферичній крові, що обмежує забезпечення тканин киснем. Це, зі свого боку, пригнічує процеси субстратного фосфорилювання в м'язовій тканині 1-місячних щурят, народжених від опромінених у різних дозах тварин. Вираженість метаболічних порушень виявилася залежною від дози опромінення дорослих організмів, де опромінення дозою 1,0 Гр батьків призводить до вираженого зниження активності піруваткінази у скелетних м'язах іхніх нащадків, а ніж у міокарді, у яких спостерігали лише незначне зменшення ферментативної активності. На тлі ослаблення окисного фосфорилювання це зумовлює дефіцит енергії, яка формується шляхом анаеробного гліколізу, що критично важливо для збереження функціональної активності м'язів у стані гіпоксії.

Ключові слова: тотальне γ -опромінення, нащадки опромінених тварин, клітини крові, піруваткіназа, лактатдегідрогеназа.

© A. A. Kostina, G. F. Stepanov et al., 2025

Стаття поширюється на умовах ліцензії

Introduction

The study of the effects of ionizing radiation is of great importance due to the global prevalence of radiation exposure factors [1; 2].

The widespread use of atomic energy for peaceful purposes – in energy production, medicine, agriculture, industry, and space exploration – alongside the deployment of nuclear weapons in military conflicts, poses a serious potential risk to both current and future generations. It is worth emphasizing that the number of individuals exposed to sources of ionizing radiation will continue to grow [3].

In the context of prolonged technogenic impact on the biosphere, the study of chronic low-intensity radiation exposure has gained particular relevance. Under conditions of large-scale environmental radiation contamination, assessing its biological effectiveness is a priority in modern research. It is known that populations living in areas with elevated radiation backgrounds exhibit a steady increase in overall morbidity, indicating the long-term effects of low-dose ionizing radiation on the body [4].

Moreover, literature data indicate that most participants in the Chernobyl accident received such doses of radiation. Current research confirms the high genetic impact of both acute and chronic low-dose radiation exposure [5].

Unlike muscle tissue, which is considered radioresistant [6], blood cells are characterized by high metabolic activity and rapid division, making them among the first to respond to ionizing radiation, even at low doses [7; 8].

Furthermore, under single or especially prolonged exposure to low doses of ionizing radiation, the mechanisms of radiation-induced changes in the hematopoietic system are considerably more complex than those observed after sublethal or lethal exposures and remain insufficiently understood. Accumulating experimental data under conditions closely resembling those in radiation-contaminated regions may contribute to a deeper understanding of these processes [9; 10].

When offspring born to animals exposed to even minor doses of ionizing radiation are subjected to irradiation, it is logical to assume the development of more profound changes in hematopoietic system parameters.

The aim of the work is to investigate the role of the blood cell component in the formation of muscle dysfunction in irradiated offspring born to animals irradiated at different doses. This knowledge can facilitate the development of preventive, therapeutic and rehabilitation measures for muscle dysfunctions caused by ionizing radiation in irradiated offspring.

Materials and Methods

The studies were conducted on 1-month-old white rats weighing 30–32 g, Wistar line, maintained on a standard laboratory diet. The young rats had free access to food and water and were kept under standard housing conditions with a natural 12-hour light-dark cycle, 60% humidity, and a temperature of $(22 \pm 1)^\circ\text{C}$. All procedures involving the animals were performed in accordance with institutional and international guidelines for animal care [11]. The assessment of prenatal loss was not performed.

The animals were divided into groups as follows:

Group 1 – 1-month-old rats born to intact animals (the control group).

Group 2 – 1-month-old rats born to animals irradiated with a dose of 0.5 Gy, subsequently exposed to a 1.0 Gy dose.

Group 3 – 1-month-old rats born to animals irradiated with a dose of 1.0 Gy, subsequently exposed to the same dose.

Each group consisted of 10 animals.

For the experiment, 1-month-old rats obtained from animals irradiated with a dose of 0.5 and 1.0 Gy were subjected to total single gamma irradiation with ^{60}Co in the morning after an overnight fast using the "Agat" telegamma therapy unit at a distance of 75 cm from the radiation source, dose rate of 0.54 Gy/min and absorbed dose of 1.0 Gy.

For biochemical studies, the animals were euthanized under propofol anesthesia (intravenous, 60 mg/kg). After dissection, blood was collected and the heart and anterior thigh muscles were excised. Tissue preparation was conducted according to standard protocols [12]. To determine the content of biosubstrates in the tissues, the samples were immersed in liquid nitrogen, deproteinized with 0.6 N perchloric acid, and homogenized. The protein precipitate was separated by centrifugation for 15 minutes at 3000 rpm.

For the biochemical assays, the mitochondrial supernatant and blood from the experimental animals were used.

The study focused on determining hematological parameters, enzyme activity and concentrations of metabolites involved in aerobic and anaerobic metabolism pathways, as well as oxidative and substrate-level phosphorylation in different muscle types of irradiated rats born to mature animals irradiated at different doses.

To assess blood cellular elements and serum protein content, blood samples were collected from the tail vein. This method allowed for longitudinal monitoring of the same animals over a 30-day observation period [13]. The proposed technique for determining blood protein levels offers the advantage of minimal invasiveness: it requires only microvolumes of blood, easily obtained from the tail vein so there was no need for euthanasia. This enables objective tracking of the biological status (cellular elements, protein levels) in the same animals throughout the experiment, which is crucial for studying pathological processes. The quantitative composition of blood cells was determined using an automated hematology analyzer (Mindray BC-5800, China).

To determine enzyme activities and metabolite levels, the animals were removed from the experiment one day after irradiation at a dose of 1.0 Gy.

The principle of pyruvate kinase activity determination is based on the conversion of phosphoenolpyruvate to pyruvate in the presence of ADP. Subsequently, pyruvate is reduced to lactate by lactate dehydrogenase (LDH) in the presence of reduced NAD (NADH), during which NADH is oxidized [14]. Pyruvate kinase activity was expressed in nmol of pyruvate per mg of protein per minute of incubation.

The principle of the method for determining lactate dehydrogenase activity is based on the reduction of pyruvate to lactate in the presence of reduced NAD [15]. LDH activity was expressed in μmol NADH consumed per mg of protein in the sample per 1 min of incubation.

The principle of the method for determining lactate and pyruvate content is based on the enzymatic reaction catalyzed by LDH in the presence of either the oxidized or reduced form of NAD. The accumulation or depletion of NADH was recorded spectrophotometrically at 340 nm against a control without tissue extract, with results expressed in μmol per 1 g of tissue [14]. The protein content in the samples was determined using the biuret method.

The obtained data were processed using parametric and non-parametric statistical methods. Statistical analysis was performed using the "IBM SPSS Statistics 20" software package. The minimum level of statistical significance was set at $p < 0.05$.

Research results and their discussion

The study results indicate that as early as one day post-irradiation, the offspring born to animals irradiated with 0.5 Gy and subsequently exposed to an additional 1.0 Gy dose exhibited a decrease in hemoglobin levels and red blood cell count, along with an increase in platelets, lymphocytes, reticulocytes, and a statistically significant rise in leukocytes in the peripheral blood ($H = 22.068$; $df = 5$; $p < 0.05$) compared to intact animals.

On the third day following irradiation, a further statistically significant decrease in hemoglobin was observed compared to the control group ($H = 34.483$; $df = 5$; $p < 0.05$). Concurrently, a trend towards a decrease in the number of erythrocytes, reticulocytes, leukocytes, and platelets was noted, while the lymphocyte count increased. Although the number of erythrocytes, reticulocytes, and platelets remained below control levels, the leukocyte count, despite declining, still exceeded that of intact rats.

By the seventh day post-irradiation, a significant reduction in hemoglobin concentration was observed ($H = 34.483$; $df = 5$; $p < 0.05$), against a background of non-significant decrease in erythrocytes, reticulocytes, and platelet counts. A similar trend was observed for leukocytes and lymphocytes, however, their levels still exceeded control values by 2.5% and 11.2%, respectively.

By the 15th day, a significant reduction was observed in most blood cell counts. An exception was the leukocyte count, which remained somewhat elevated, while the lymphocyte proportion was 34.4% higher than in the controls ($H = 29.564$; $df = 10$; $p < 0.01$).

By day 30, a partial restoration of the blood cell composition was noted; however, most parameters remained lower than those in the intact animals, with the exception of platelets, the level of which was slightly elevated compared to the non-irradiated animals.

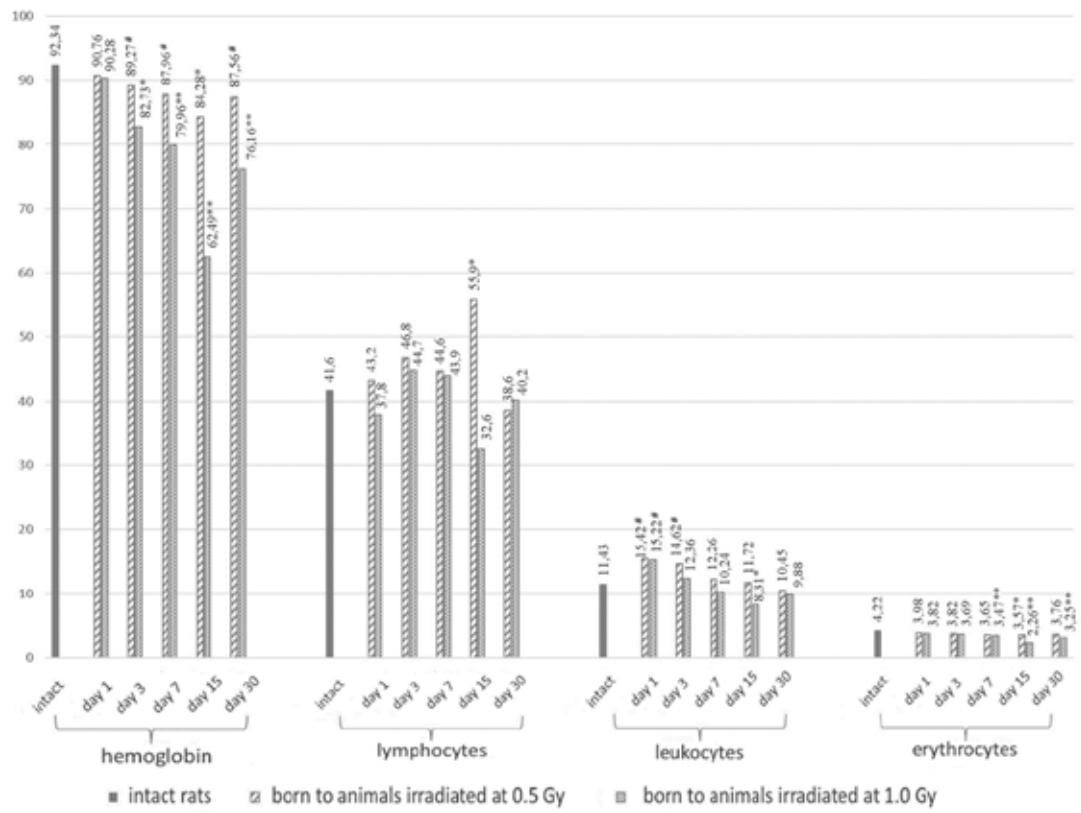
More profound changes in hematological parameters were observed in the offspring born to animals irradiated with a dose of 1.0 Gy and subsequently subjected to the same dose of irradiation.

In the offspring of animals irradiated with 1.0 Gy, following re-irradiation with the same dose, pronounced changes in hematological parameters were recorded (Fig. 1).

Within 1 day, hemoglobin levels decreased by 1.7% compared to the control, and erythrocyte count was 7.6% lower. At the same time, a statistically significant increase in leukocytes by 1.35 times ($H = 54.961$; $df = 10$; $p < 0.05$) was observed, while lymphocyte levels decreased by 10%.

By day 3, the decrease in hemoglobin had progressed and reached 89.5% of the intact level; the erythrocyte count decreased by 9.5%, and reticulocytes and platelets decreased by 10% and 7.5%, respectively. Meanwhile, leukocyte levels remained elevated by 8% compared with the intact animals, while lymphocyte content increased by 7.5% compared to intact animals.

By the seventh day, hemoglobin concentration reduced by 13.4% ($H = 54.625$; $df = 5$; $p < 0.001$), and reticulocyte and platelet counts also declined slightly. Erythrocyte count decreased by 17.8% ($H = 40.146$; $df = 10$; $p < 0.001$). Leukocyte counts decreased by nearly 11%. Meanwhile, lymphocyte levels were 5.5% higher than in intact animals.


On day 15, minimal values were recorded, specifically: hemoglobin decreased by 32.3% ($H = 94.056$; $df = 10$; $p < 0.001$), erythrocytes by 42.5% ($H = 40.146$; $df = 10$; $p < 0.001$), leukocytes by 27.3% ($H = 54.961$; $df = 10$; $p < 0.01$), platelets by 28.6% ($H = 40.506$; $df = 10$; $p < 0.001$), and lymphocytes by 21.6%.

By day 30, partial restoration of the blood cell composition was observed; however, hemoglobin levels remained reduced by 17.5% compared to controls ($H = 94.056$; $df = 10$; $p < 0.001$), erythrocytes by 27% ($H = 40.146$; $df = 10$; $p < 0.001$), and platelets by 32% ($H = 40.506$; $df = 10$; $p < 0.001$). These changes were accompanied by a non-significant decrease in leukocyte and lymphocyte counts, whereas the reticulocyte count was slightly elevated relative to the control group.

The decrease in hemoglobin and erythrocyte content in the peripheral blood of offspring born to animals irradiated at different doses, which were exposed to irradiation at a dose of 1.0 Gy, is one of the prerequisites for decreased tissue oxygenation. Consequently, energy production relies more on less efficient anaerobic mechanisms.

Analysis of the activity of key enzymes and the content of substrates involved in aerobic and anaerobic metabolism, as well as oxidative and substrate-level phosphorylation processes in the myocardium and skeletal muscle of the offspring of irradiated animals, revealed specific patterns. In the myocardium of offspring born to animals irradiated with 0.5 Gy and subsequently exposed to a dose of 1.0 Gy, a moderate decrease in pyruvate kinase activity was noted. The lowest value of this enzyme was recorded in the offspring whose parents were irradiated with 1.0 Gy and which themselves received the same dose; this value was almost 20% lower than in intact animals (Fig. 2).

The most pronounced changes were detected in skeletal muscles. In the offspring of animals irradiated with 0.5 Gy, which were additionally irradiated with 1.0 Gy, pyruvate kinase activity decreased insignificantly. In contrast, in 1-month-old rats born to animals irradiated with 1.0 Gy and re-irradiated with the same dose, this indicator was significantly lower compared to the control ($F(2, 27) = 3.464$; $p = 0.046$), measuring 238.2 nmol/mg protein per min of incubation.

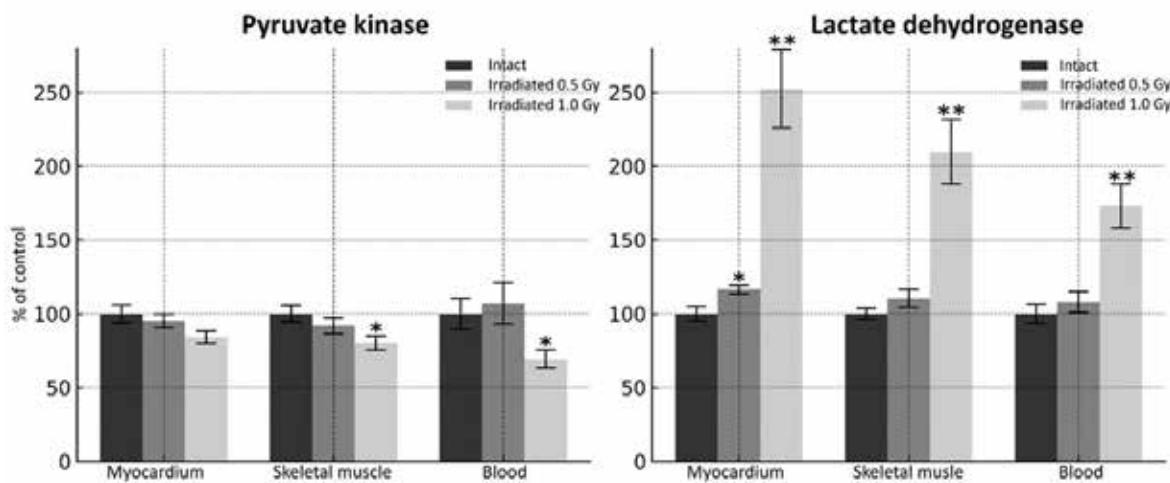


Fig. 1. Peripheral blood parameters of intact 1-month-old rats and 1-month-old rats born to animals irradiated at different doses and subjected to irradiation at a dose of 1.0 Gy (n = 10)

Notes:

1. Hemoglobin content is expressed in g/L, erythrocytes in $10^{12}/L$, leukocytes in $10^9/L$, lymphocytes in %.

2. # – $p < 0.05$; * – $p < 0.01$; ** – $p < 0.001$ – significant differences compared to intact rats.

Fig. 2. Activity of pyruvate kinase and lactate dehydrogenase in muscle tissue and blood serum of intact 1-month-old rats and 1-month-old rats born to animals irradiated with different doses and subjected to irradiation at a dose of 1.0 Gy (n = 10)

Notes:

1. Pyruvate kinase activity in myocardium and skeletal muscles is expressed in nmol/mg protein per min; in blood serum, in nmol/mg protein per min.

2. Lactate dehydrogenase activity in myocardium and skeletal muscles is expressed in μ mol/mg protein per min; in blood serum, in nmol/mg protein per min.

3. * – $p < 0.05$; ** – $p < 0.001$ – significant differences in the studied parameters compared to the corresponding parameters in intact animals.

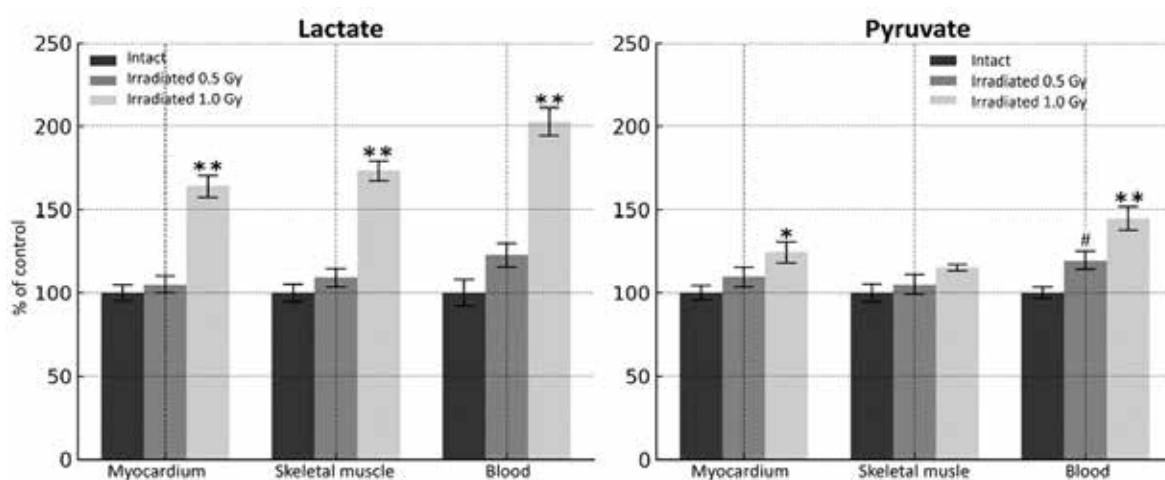
Considering that glycolytic substrate-level phosphorylation is a primary energy source for skeletal muscles, these results indicate a reduced energy potential in this tissue, which inevitably affects the physical performance of offspring born to irradiated animals and subsequently exposed to the same radiation dose.

Pyruvate kinase activity in the blood of 1-month-old rats born to animals irradiated with a dose of 0.5 Gy and subsequently exposed to an additional 1.0 Gy dose was elevated compared to intact animals. In contrast, the blood of 1-month-old rats born to animals irradiated with a dose of 1.0 Gy and re-irradiated with the same dose showed a statistically significant decrease in enzyme activity ($F(2, 27) = 3.482$; $p = 0.045$), representing an approximately 1.5-fold reduction compared to intact animals.

The final stage of glycolytic metabolism is characterized by activation of lactate dehydrogenase (LDH). Increased LDH activity was noted both in peripheral blood and in all analyzed tissues of 1-month-old rats born to animals irradiated with 0.5 Gy and exposed to 1.0 Gy, compared to intact animals.

When the parental generation was irradiated with a dose of 1.0 Gy, a statistically significant increase in lactate dehydrogenase activity was observed in both the myocardium and skeletal muscles of their offspring, which were irradiated with the same dose. In the cardiac muscle cytoplasm of 1-month-old rats born to animals irradiated with 1.0 Gy and subsequently irradiated with the same dose, the enzyme activity increased by 2.5-fold ($H = 21.695$; $df = 2$; $p < 0.001$) compared to the intact control. In the skeletal muscle cytoplasm, this parameter exceeded control values 2.1-fold ($H = 16.312$; $df = 2$; $p < 0.001$), and in the blood serum, by 1.7-fold ($H = 13.169$; $df = 2$; $p < 0.001$).

The content of the products of the pyruvate kinase and lactate dehydrogenase reactions – pyruvate and lactate – was significantly higher in the studied tissues. The increase in these metabolites was dependent on the parental irradiation dose.


In the cardiac muscle of offspring born to animals irradiated with a dose of 0.5 Gy, the lactate concentration increased by 5.1% compared to control, whereas in offspring born to animals irradiated with 1.0 Gy, this indicator increased 1.64-fold ($H = 19.419$; $df = 2$; $p < 0.001$). Pyruvate levels increased by 9.6% in offspring of animals irradiated with 0.5 Gy and by 24.5% ($H = 6.939$; $df = 2$; $p < 0.01$) in offspring of animals irradiated with 1.0 Gy compared to intact animals. Consequently, the lactate/pyruvate ratio reached 11.52, which is 37.5% higher than the control (Fig. 3).

In the skeletal muscle of the offspring of animals irradiated with 0.5 Gy and subjected to irradiation at 1.0 Gy, the lactate level increased by 9.1%, while in the double-irradiated group it increased by 1.73 times ($H = 19.861$; $df = 2$; $p < 0.001$). Pyruvate increased by 4.9% and 15.3%, respectively, while the lactate/pyruvate ratio rose to 14.37, which is 1.44 times higher than the control.

In the blood of irradiated 1-month-old rats born to animals irradiated with 0.5 Gy, the lactate level increased by 22.7%, while in the offspring of animals irradiated with 1.0 Gy, this parameter was twice the control value ($H = 20.968$; $df = 2$; $p < 0.001$). Pyruvate concentration increased by 19.6% ($H = 16.547$; $df = 2$; $p < 0.05$) in the offspring of animals irradiated with 0.5 Gy and by 44.6% ($H = 16.547$; $df = 2$; $p < 0.001$) in offspring from animals irradiated with 1.0 Gy. The lactate/pyruvate ratio increased by 13.6% and 36.6%, respectively.

Thus, in the offspring born to irradiated animals and subsequently exposed to a 1.0 Gy dose, a significant accumulation of lactate is observed in the myocardium, skeletal muscle, and blood serum, accompanied by an increase in pyruvate levels and a rise in the lactate/pyruvate ratio. This indicates a shift in metabolism toward anaerobic glycolysis and activation of the lactate dehydrogenase pathway for energy supply.

The obtained data indicate that even during the early periods following irradiation, the offspring born to

Fig. 3. Content of lactate and pyruvate in muscle tissue and blood serum of intact 1-month-old rats and 1-month-old rats born to animals irradiated at different doses and subjected to irradiation at a dose of 1.0 Gy (n = 10)

Notes:

1. Lactate and pyruvate content are expressed in $\mu\text{mol/g}$ of tissue; in blood – in $\mu\text{mol/mL}$.
2. # – $p < 0.05$; * – $p < 0.01$; ** – $p < 0.001$ – significant differences compared to intact rats.

animals exposed to ionizing radiation develop pronounced alterations in peripheral blood parameters and energy metabolism. As early as one day after re-irradiation with a 1.0 Gy dose, a decrease in hemoglobin level and erythrocyte count was observed, alongside an increase in leukocyte, platelet, reticulocyte, and lymphocyte numbers. This suggests the activation of compensatory-adaptive processes in the hematopoietic system aimed at maintaining oxygen transport under conditions of radiation stress.

By days 3 and 7 post-irradiation, the changes intensified, manifesting as a significant decrease in hemoglobin and a trend towards suppression of erythropoiesis.

By day 15, the offspring of 0.5 and 1.0 Gy-irradiated animals exhibited minimal erythroid parameter values, accompanied by a significant reduction in hemoglobin concentration, erythrocytes, and platelets count. This indicates depletion of bone marrow reserves and a transition from the adaptive to the maladaptive phase of the hematological response. The partial restoration of the blood cell composition by day 30 points to the implementation of regenerative hematopoiesis mechanisms, although hemoglobin and erythrocyte levels remained below control values.

The decrease in hemoglobin and erythrocyte content in the peripheral blood could be a predisposing factor to tissue hypoxia, leading to a shift in energy metabolism towards less efficient anaerobic mechanisms. This is corroborated by the results of biochemical analysis, which indicate decreased pyruvate kinase activity and increased lactate dehydrogenase activity in the myocardium, skeletal muscles, and blood.

The observed decrease in pyruvate kinase activity in the skeletal muscles and blood of the offspring of 1.0 Gy-irradiated animals reflects the inhibition of the final stages of the glycolytic pathway and a reduction in the intensity of substrate-level phosphorylation. Conversely, the increase in lactate dehydrogenase activity and the elevated levels of lactate and pyruvate suggest a metabolic shift towards anaerobic glycolysis. The increased lactate/pyruvate ratio, particularly in skeletal muscles and blood,

is indicative of the activation of the anaerobic energy-producing pathway, compensating for the ATP deficit under conditions of insufficient tissue oxygenation.

Thus, in the offspring of animals subjected to radiation exposure, a complex metabolic response develops, combining impaired erythropoiesis, reduced blood oxygenation capacity, and activation of anaerobic energy production aimed at maintaining cellular viability under hypoxic conditions.

Conclusions

1. In the offspring of animals irradiated with 0.5 or 1.0 Gy and subsequently re-exposed to 1.0 Gy, anemic changes appear as early as the first day after exposure. These are characterized by decreased hemoglobin levels and erythrocyte counts, accompanied by increased leukocyte and platelet numbers, indicating the activation of compensatory mechanisms within the hematopoietic system.

2. The most profound impairments in hematopoiesis are noted on the fifteenth day post-irradiation, when hemoglobin concentration and erythrocyte count reach their minimum values, suggesting suppression of bone marrow erythropoietic activity.

3. In the myocardium and skeletal muscles of the offspring born to irradiated animals, a decrease in pyruvate kinase activity and an increase in lactate dehydrogenase activity are observed. This is accompanied by an accumulation of lactate and pyruvate, an increased lactate/pyruvate ratio, and reflects a shift in energy metabolism towards anaerobic glycolysis. This shift leads to an energy deficit, which diminishes the adaptive and compensatory capabilities of the offspring of irradiated animals.

4. The obtained data indicate the formation of dose-dependent adaptive-maladaptive changes in the hematopoietic and energy supply systems in the offspring born to animals irradiated at different doses and subsequently exposed to an additional 1.0 Gy dose. This complex of changes could serve as an early biomarker of radiation exposure.

BIBLIOGRAPHY

1. Zhukovska OS, Kushta AO. The impact of ionizing radiation on the human body. *Reports of Morphology*. 2016; 22(1): 117–20. (In Ukrainian). Available from: <https://dspace.vnmu.edu.ua/handle/123456789/6321?show=full&locale-attribute=uk>.
2. Vyryva OY, Holovina YO., Ashukina NO, Malyk RV, Danyshchuk ZM. Effects of gamma radiation and post-operative cisplatin injection on the incorporation of bone allografts in rats. *Ukrainian Journal of Radiology and Oncology*. 2021; 29(3): 51–62. <https://doi.org/10.46879/ukroj.3.2021.51-62>.
3. Tarasenko M, Kozak K. Prospects for the use of atomic energy for peaceful purposes. *Herald of Khmelnytskyi National University. Technical Sciences*. 2024; 339(4): 201–6. DOI: 10.31891/2307-5732-2024-339-4-32. (In Ukrainian). Available from: <https://heraldts.khmnu.edu.ua/index.php/heraldts/article/view/353>.
4. Vasylenko VV, Kuriata MS, Morozov VV, et al. Study of dose formation for the population in radioactively contaminated areas of Zhytomyr region based on comprehensive radiation-hygienic monitoring. *Probl Radiac Med Radiobiol*. 2024; (29): 79–91. (In English, Ukrainian). doi: 10.33145/2304-8336-2024-29-79-91.
5. Sushko VO, Kolosynska OO, Apostolova OV. Structure and characteristics of the Chornobyl NPP accident survivors causes of death according to the materials of medical expertise for the causal relationship of diseases with the effect of ionizing radiation in the remote postaccidental period (2024 year). *Probl Radiac Med Radiobiol*. 2024; (29): 419–424. (In English, Ukrainian). DOI: 10.33145/2304-8336-2024-29-419-424.
6. Vinnikov VA, Rubleva TV. Predictors of radiation-induced complications in radiation oncology based on cell survival tests after ex vivo exposure: literature review. *Ukrainian Journal of Radiology and Oncology*. 2021; 29(1): 89–118. <https://doi.org/10.46879/ukroj.1.2021.89-118>.
7. Glavin OA, Domina EA, Ivankova VS, Mikhailenko VM, Makovetska LI, Khrulenko TV, Druzhyna MO. Intensity of oxidative processes in blood and level of apoptosis in blood lymphocytes in radiologists/x-ray technologists exposed

- to small doses of ionizing radiation. *Probl Radiac Med Radiobiol.* 2023; 28: 191–205. (In English, Ukrainian). DOI: 10.33145/2304-8336-2023-28-191- 205.
8. Stepanov GF, Vastyanov RS, Kostina AA, Mokriienko EM, Lazor NV. Hematological changes in offspring of animals irradiated in different doses. *J Educ Health Sport.* 2023; 13(5): 198–212. DOI: 10.12775/JEHS.2023.13.05.026. Available from: <https://apcz.umk.pl/JEHS/article/view/49267>.
 9. Drozd IP. Chronic effects of ionizing radiation on animals and humans. *Nucl Phys At Energy.* 2013; 14(1): 42–50. (In Ukrainian). <https://doi.org/10.15407/jnpae2013.01.042>. Available from: <https://jnpae.kinr.kyiv.ua/14.1/html/jnpae-2013-14-042-Drozd.html>.
 10. Burgio E, Piscitelli P, Migliore L. Ionizing radiation and human health: reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective. *Int J Environ Res Publ Health.* 2018; 15(9): 1971. DOI: <https://doi.org/10.3390/ijerph15091971>.
 11. Hromadchenko AO, Stepanov GF, Kotiuzhynska SG. Vitamin C and hydroxyproline as markers of radiation-induced changes in the extracellular matrix. *Odesa Medical Journal.* 2025; 2(193): 23–26. (In Ukrainian). DOI: <https://doi.org/10.32782/2226-2008-2025-2-3>.
 12. Dimov AO, Stepanov GF. Pathophysiological mechanisms of nitrogen metabolism dysregulation under the influence of ionizing radiation. *World of Medicine and Biology.* 2025; 2(92): 169–173. DOI: <http://dx.doi.org/10.26724/2079-8334-2025-2-92-169-173>. Available from: <https://womab.com.ua/ua/smb-2025-02/10635>.
 13. Sybirna NO, Burda VA, Chaika YP. Metody doslidzhennia systemy krovi [Methods of Blood System Research]. Lviv: Lviv National University; 2006. 100 p. (In Ukrainian).
 14. Muñoz ME, Ponce E. Pyruvate kinase: current status of regulatory and functional properties. *Comp Biochem Physiol B Biochem Mol Biol.* 2003; 135(2): 197–218. DOI: 10.1016/S1096-4959(03)00081-2.
 15. Nakonechna OA, Bachynskyi RO. Biokhimiia fermentiv. Aspekty medychnoi enzymolohii [Biochemistry of enzymes. Aspects of medical enzymology]. Kharkiv. 2020, 48 p.

Надійшла до редакція 13.04.2025
 Прийнята до друку 02.12.2025
 Електронна адреса для листування alinakostina@ukr.net

КЛІНІЧНА ПРАКТИКА

УДК 616.31-053.2:628.1:543.3(477.85)

DOI <https://doi.org/10.32782/2226-2008-2025-5-2>

О. І. Годованець <https://orcid.org/0000-0002-1889-3893>
А. В. Котельбан <https://orcid.org/0000-0001-8266-3454>
М. П. Митченок <https://orcid.org/0000-0002-2454-3021>
А. І. Ратушняк <https://orcid.org/0009-0004-0677-6229>
О. В. Митченок <https://orcid.org/0000-0002-5812-2532>

ЕСЕНЦІАЛЬНИЙ СКЛАД ПИТНИХ ВОД ЧЕРНІВЕЦЬКОЇ ОБЛАСТІ ТА ЙОГО ВПЛИВ НА СТОМАТОЛОГІЧНЕ ЗДОРОВ'Я ДІТЕЙ

Буковинський державний медичний університет, Чернівці, Україна

УДК 616.31-053.2:628.1:543.3(477.85)

О. І. Годованець, А. В. Котельбан, М. П. Митченок, А. І. Ратушняк, О. В. Митченок
ЕСЕНЦІАЛЬНИЙ СКЛАД ПИТНИХ ВОД ЧЕРНІВЕЦЬКОЇ ОБЛАСТІ ТА ЙОГО ВПЛИВ НА СТОМАТОЛОГІЧНЕ ЗДОРОВ'Я ДІТЕЙ

Буковинський державний медичний університет, Чернівці, Україна

У статті проаналізовано мікроелементний склад питних вод Чернівецької області та визначено роль мікроелементів водного походження в поширеності карієсу серед дитячого населення. Спостерігалося збільшення концентрації кальцію з 59,1 до 124 мг/л, що вказує на підвищенну жорсткість води. Вміст магнію перебував у межах допустимих значень і коливався від 5,02 до 49,8 мг/л. Цинк, залізо та мідь перебували в межах гранично-допустимих значень, та їхня кількість залежала від регіону.

Особливу увагу заслуговує фтор, оскільки тільки у двох пробах із річок Прут і Сирет його концентрація була в нормі. У пробах із річки Дністер – середній вміст фтору, з річки Черемош у нижній течії – низький вміст фтору, з річки Черемош у верхній течії – український низький.

Досліджені концентрації мікро- та макроелементів вказують на неякісний склад питної води з річок Дністер і Черемош для підтримання стоматологічного здоров'я дітей.

Ключові слова: питна вода, річки Буковини, фтор, стоматологічне здоров'я.

UDC 616.31-053.2:628.1:543.3(477.85)

О. І. Godovanets, A. V. Kotelban, M. P. Mytchenok, A. I. Ratushniak, O. V. Mytchenok
THE ESSENTIAL COMPOSITION OF DRINKING WATER OF THE CHERNIVTSI REGION AND ITS EFFECT ON THE DENTAL HEALTH OF CHILDREN

Bukovinian State Medical University, Chernivtsi, Ukraine

One of the main ecological problems of mankind is the quality of drinking water, which directly affects the health of the population. Dental health undoubtedly depends on the essential composition of drinking water.

The aim. To evaluate the trace element composition of drinking water and to determine the role of trace elements of water origin in the prevalence of caries among children in the Chernivtsi region.

Materials and methods. We analyzed Regional Reports on the state of the environment in the Chernivtsi region in 2021, 2020, and 2019, and we also took samples of drinking water in 13 schools in the region, where dental examinations of schoolchildren were conducted. Chemical and analytical studies of water samples were carried out at the Ukrainian Scientific Center for Marine Ecology.

Results. The waters of the rivers of the Chernivtsi region are classified as “slightly polluted”, compared to previous years, there is a tendency to improve the quality of drinking water intakes on the Prut and Siret rivers.

As for the macroelemental composition of drinking water, the calcium content did not exceed the maximum permissible concentrations only in the Prut River, in the village of Herts. In the rest of the regions, there is an increase in calcium concentration from 59.1 to 124 mg/l, which indicates increased water hardness. The magnesium content was within the permissible values and ranged from 5.02 to 49.8 mg/l.

Trace elements such as zinc, iron and copper were within the limits of permissible values and their amount depended on the region.

Fluorine deserves special attention, since its concentration was normal only in two samples from the Prut River and the Syret River. Samples from the Dniester River have an average fluoride content, from the Cheremosh River in the lower reaches – a low fluoride content, from the Cheremosh River in the upper reaches – extremely low.

© О. І. Годованець, А. В. Котельбан та ін., 2025

Стаття поширюється на умовах ліцензії

Conclusions. The investigated concentrations of micro- and macroelements indicate the poor quality of drinking water from the Dniester and Cheremosh rivers for maintaining the dental health of children in the Chernivtsi region.

Keywords: drinking water, Bukovyna rivers, fluoride, dental health.

Вступ

Основним чинником нормальної життєдіяльності людини є її забезпеченість чистою та фізіологічно повноцінною питною водою. За даними ВООЗ, понад 80 відсотків усіх проблем здоров'я людини пов'язані з якістю питної води [1]. Власне водопровідна питна вода визначає ступінь екологічного й епідеміологічного благополуччя цілих регіонів. Адже з водою надходить багато солей, у тому числі макро- і мікроелементи, як-от кальцій (10–20%), магній (5–15%), натрій (10%), калій, йод, фтор та ін. Потребу в питній воді людини і суспільства назагал задовільняють насамперед річки, вони є важливими транспортними артеріями [2].

Територією Чернівецької області течуть понад 70 річок, які належать до басейну Чорного моря. Основними з них є Прут, Сирет і Дністер. Прут є лівою притокою Дунаю, бере початок з джерела на схилі Говерли, верхня течія річки проходить через Чернівецьку й Івано-Франківську області. Більшість річок нашої області належить саме до басейну Прута [2]. Найбільшою його притокою є Черемош. Ця річка в своїй верхній течії має гірський характер, упродовж 33 км лежить у вузькій звивистій гірській долині. Нижня течія в межах Передкарпаття пливе широкою долиною 3–5 км, схили долини невисокі, пологі, терасовані. Сирет є лівою притокою Дунаю, у своїй верхній частині тече територією України і є теж гірською річкою, бере початок у межах гори Магура. Дністер тече вздовж північної межі області протягом 272 км і на цій території має рівнинний характер; праві притоки його невеликі [3].

Велика кількість річок, що течуть територією Чернівецької області та мають різну геолокацію, зумовлює необхідність вивчення складу питної води, передусім макро- та мікроелементів як основного чинника ризику розвитку захворювань твердих тканин зубів у дітей.

Метою дослідження є оцінити мікроелементний склад питних вод і визначити роль мікроелементів водного походження в поширеності карієсу серед дитячого населення Чернівецької області.

Матеріали та методи дослідження

Для вирішення мети нами проведено аналіз регіональних діповідей про стан навколишнього середовища в Чернівецькій області в 2021, 2020 роках [4; 5], також нами було взято проби питної води в 13 школах області, де проводилися стоматологічні огляди школярів. Хіміко-аналітичні дослідження проб води провели в НДУ «Український науковий центр екології моря». Дослідження проводилося із дотриманням принципів Гельсінської декларації Світової медичної асоціації «Етичні засади медичних досліджень, що стосуються людських суб'єктів».

Результати дослідження та їх обговорення

Води річки Дністер належать до категорії «слабко забруднені». Коєфіцієнт становив КДністр = 1,17.

Визначені поодинокі перевищення санітарних норм у пробах, зокрема в теплу пору року, та середні річні показники перебували в межах норми. Суттєвих перевищень санітарних норм у питній воді не спостерігалося, а метеорологічні умови сприяли відносно задовільному стану вод в усюму басейні. Якість вод Дністра у 2021 році порівняно з аналогічним періодом попередніх років не змінилася [3].

До категорії «слабко забруднені» також належать води р. Прут з коефіцієнтом КПрут = 1,21, р. Сирет і р. Черемош з коефіцієнтами відповідно КСирет = 1,2. Усі показники в басейнах цих річок на території Чернівецької області відповідали нормам. У зв'язку з відсутніми значними антропогенними джерелами забруднення, води цих річок характеризуються як «добрі» за станом і «чисті» за ступенем чистоти [3; 4].

Крім того, спостерігається тенденція до поліпшення якісного стану в місцях питних водозаборів на річках Прут і Сирет порівняно з аналогічним періодом 2021, 2020, 2019 років [3; 4].

За результатами проведених нами хіміко-аналітичних досліджень встановлено, що мікроелементний склад питної води варіює залежно від геолокації (табл. 1).

Уміст кальцію, «будівельного матеріалу» для кісткових тканин, у дослідженнях пробах із басейнів річок Дністер і Сучава вдвічі вищий за допустиму концентрацію, відповідно у 2,24 та 2,48 раза. Вірогідно вищі показники порівняно з допустимими значеннями також із проб р. Черемош як у верхній течії – в 1,68 раза, так і в нижній течії – в 1,64 раза та в м. Чернівці – в 1,76 раза. На 15,29% вищі показники з проб р. Сирет. Цікавими є результати з р. Прут, що в смт Герца, вміст кальцію є нижчим за допустимі значення на 35,60%. Такі результати свідчать про жорсткість питної води, можливі порушення кислотно-лужної рівноваги в ротовій порожнині та високу ймовірність кальцифікації зубного нальоту.

Іншим найбільш поширеним макроелементом є магній. У дослідженнях пробах його концентрація перебуває у межах допустимих значень і коливається від 5,02 до 49,8 мг/л. Крайні нижні значення магнію виявлено в пробах із річок Сирет, Сучава та Черемош в верхній течії. У решти зразках – середні значення.

Одним із ключових чинників карієрезистентності зубної емалі є надходження фтору з питною водою. Його концентрація в досліджуваних пробах води з різних водозабірних басейнів річок Чернівецької області варіє в широких межах – від 0,05 до 1,28 мг/л. У населених пунктах смт Герца, де протікає р. Прут, та смт Глибока, басейн р. Сирет, концентрація фтору в межах гранично-допустимої концентрації – 1,28 та 0,83 мг/л відповідно. Середній вміст фтору (0,43 мг/дм³ та 0,64 мг/л) визначений у с. Клішківці (р. Дністер) та смт Красноїльськ (р. Сучава). До зон з низьким вмістом фтору (0,29 мг/л) належать смт Вижниця, басейн р. Черемош у нижній течії. Найнижчий вміст (0,05 мг/л)

Результати хімічного аналізу проб питної води в найбільших річках Чернівецької області

Показник	Кальцій, мг/л	Магній, мг/л	Фтор, мг/л	Цинк, мкг/л	Залізо, мкг/л	Мідь, мкг/л
Виявлено в пробах води	с. Клішківці (р. Дністер)	112	49,8	0,45	173	23,1
	смт Герца (р. Прут)	32,2	45,0	1,28	23,9	< 6
	смт Глибока (р. Сирет)	59,1	11,5	0,83	8,21	< 6
	смт Красноїльськ (р. Сучава)	124	7,30	0,64	147	< 6
	с. Довгопілля (р. Черемош у верхній течії)	84,2	5,02	0,05	5,02	< 6
	смт Вижниця (р. Черемош у нижній течії)	82,2	48,6	0,29	< 1	< 6
	м. Чернівці	88,2	9,72	0,50	< 1	5,33
границно-допустима концентрація*	50,01	80–1,5**	0,7–1,5**	5000*	300*	1000*

Примітки:

1. * – границно-допустима концентрація, згідно з ГОСТ № 2874-82 «Вода питна».

2. ** – рекомендоване значення згідно з документом: Державні санітарні правила і норми «Вода питна. Гігієнічні вимоги до якості води централізованого господарсько-питного водопостачання», наказ Міністерства охорони здоров'я України № 383 від 23.12.1996 [6]

3. – Директива Ради 98/83/ЄС Швейцарія [7].

фтору мають питні води з басейну р. Черемош у верхній течії.

У всіх річкових басейнах вміст цинку, елемента, який підтримує нормальний ріст і розвиток дитячого організму, відповідає границю-допустимим межам, однак є відмінності залежно від регіону. Найвища концентрація встановлена в басейні р. Дністер (с. Клішківці) і становить 173 мкг/л. На 15,02% нижчий вміст цинку в річці Сучава, на 86,18 % – у річці Прут, що в смт Герца, на 95,25% – у р. Сирет, на 97,09% – у верхній течії р. Черемош. Найменші значення (менше за 1 мкг/л) визначено в нижній течії р. Черемош та у водопроводі м. Чернівці.

Концентрація заліза в питних водах Чернівецької області в границю-допустимих межах. У всіх досліджені пробах його вміст менше за 6 мкг/л, окрім р. Дністер, де 23,1 мкг/л заліза.

Щодо вмісту міді в питній воді, то найвища її концентрація в р. Дністер, що в 10,94 раза нижче за границю-допустимі значення. У решти регіонів уміст цього мікроелемента менше за 10 мкг/л: у р. Сучава – 6,36 мкг/л, водопровідна вода м. Чернівці – 5,33 мкг/л,

у р. Прут – 4,29 мкг/л, у р. Сирет – 1,62 мкг/л, у р. Черемош у верхній течії – 1,34 мкг/л, а в нижній течії – менше ніж 0,5 мкг/л.

Висновки

Води річок Чернівецької області належать до «слабко забруднених». Макроелементний і мікроелементний склад питної води перебував у широких межах залежно від річкового басейну. Назагал концентрація кальцію була вищою за границю-допустимі значення. Такі мікроелементи, як магній, цинк, залізо та мідь, перебували в межах норми, та їхня кількість залежала від регіону. Тільки у двох пробах з р. Прут і р. Сирет був допустимий рівень фтору, у решти регіонів – низький. Такі концентрації мікро- та макроелементів вказують на неякісний склад питної води з річок Дністер і Черемош для підтримання здоров'я зубошлепеної системи дітей Чернівецької області.

Фінансування та конфлікт інтересів. Автори заявляють про відсутність конфлікту інтересів. Спеціального фінансування на дослідження не виділялося.

ЛІТЕРАТУРА

- Godovanets OI, Kotelban AV, Hrynevych LH, Romanyuk DH. Chynnyky ryzyku rozvityku zakhvoryuvan tverdykh tkanyin Zubiv u ditey. Suchasnyy stan pytannya [Risk factors for the development of diseases of hard dental tissues in children. The current state of the issue]. *Medicine today and tomorrow*. 2019; 85(4): 111–20. (In Ukrainian). DOI: 10.35339/msz.2019.85.04.16.
- Rudenko SS, Lakusta OM. Vplyv antropohennych chynnykiv na CNP-stekhiometriyu vody richkovykh ekosistem [The influence of anthropogenic factors on the CNP-stoichiometry of water in river ecosystems]. *Biologichni systemy*. 2018; 10(2): 168–175. (In Ukrainian). Available from: <https://doi.org/10.31861/biosystems2018.02.169>.
- Rudenko SS, Lakusta OM. Dynamika zmin nitrohenenumisnykh spoluk u krynychniy vodi Chernivetskoyi oblasti ta yikh zvyazok iz deyakymy ahrokhimichnymy ta ahroekolohichnymy pokaznykamy [Dynamics of changes in nitrogen-containing

- compounds in well water of Chernivtsi region and their relationship with some agrochemical and agroecological indicators]. *Visnyk ahrarnoyi nauky*. 2018; 2(779): 64–71. (In Ukrainian). Available from: https://agrovisnyk.com/pdf/ua_2018_02_11.pdf.
4. Rehionalna dopovid pro stan navkolyshnoho seredovyshcha v Chernivetskiy oblasti u 2021 rotsi [Regional report on the state of the environment in Chernivtsi region in 2021]. (In Ukrainian). Available from: <https://bukoda.gov.ua/storage/app/sites/23/uploaded-files/%20%D0%94%D0%BE%D0%BF%D0%BE%D0%B2%D1%96%D0%B4%D1%8C%202021.pdf>.
 5. Rehionalna dopovid pro stan navkolyshnoho seredovyshcha v Chernivetskiy oblasti u 2020 rotsi [Regional report on the state of the environment in Chernivtsi region in 2020]. (In Ukrainian). Available from: <https://bukoda.gov.ua/storage/app/sites/23/ecology/ecology2020.pdf>.
 6. Nakaz № 383 vid 23.12.1996 Pro zatverdzhennya Derzhavnykh sanitarnykh pravyl i norm “Voda pytna. Hihiyenichni vymohy do yakosti vody tsentralizovanoho hospodarsko-pytnoho vodopostachannya” [On the approval of State sanitary rules and norms “Drinking water. Hygienic requirements for water quality of centralized domestic drinking water supply”]. (In Ukrainian). Available from: <https://zakon.rada.gov.ua/laws/show/z0136-97#Text>.
 7. Dyrektyva Rady 98/83/YES vid 3 lystopada 1998 roku pro yakist vody, pryznachenoyi dlya spozhyvannya lyudynoyu [Council Directive 98/83/EC of November 3, 1998 on the quality of water intended for human consumption]. (In Ukrainian). Available from: https://zakon.rada.gov.ua/laws/show/994_963#Text.

Надійшла до редакція 13.07.2024

Прийнята до друку 02.12.2025

Електронна адреса для листування kotelban_anastasiia@bsmu.edu.ua

I. A. Moldovanov <https://orcid.org/0000-0002-9354-6701>

D. D. Zabolotna <https://orcid.org/0000-0001-7807-8148>

EVALUATION OF RISK FACTORS FOR INTRAOPERATIVE BLEEDING IN ENDOSCOPIC SURGERY IN PATIENTS WITH CHRONIC RHINOSINUSITIS WITH NASAL POLYPS AND ASPIRIN-EXACERBATED RESPIRATORY DISEASE

State Institution “O. S. Kolomiichenko Institute of Otolaryngology of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine

UDC 616.216-002-006:616-072.1:616-089.811/.814:615.2

I. A. Moldovanov, D. D. Zabolotna

EVALUATION OF RISK FACTORS FOR INTRAOPERATIVE BLEEDING IN ENDOSCOPIC SURGERY IN PATIENTS WITH CHRONIC RHINOSINUSITIS WITH NASAL POLYPS AND ASPIRIN-EXACERBATED RESPIRATORY DISEASE

State Institution “O. S. Kolomiychenko Institute of Otolaryngology of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine

Background. Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common inflammatory disease of the paranasal sinuses that significantly impacts the quality of life. Functional endoscopic sinus surgery is the standard surgical method; however, intraoperative bleeding is a clinically significant issue, especially in patients with aspirin-exacerbated respiratory disease (AERD).

Objective. To assess factors associated with increased intraoperative bleeding in patients with CRSwNP and AERD and compare the extent of intraoperative bleeding between AERD and non-AERD groups.

Methods. A retrospective analysis was conducted on 40 patients who underwent endoscopic endonasal pansinusotomy (EEP): 27 with AERD and 13 without AERD. Assessed parameters included intraoperative blood loss (mL), surgical field visualization (Boezaart scale), and disease severity (modified Lund–Mackay scale). Statistical analysis involved Student's t-test and Pearson's correlation coefficient ($p < 0.05$).

Results. Patients with AERD had significantly higher intraoperative blood loss (161.9 ± 39.5 mL vs. 108.5 ± 45.0 mL, $p = 0.001$) and poorer surgical field visibility (Boezaart score: 3.26 ± 0.7 vs. 2.54 ± 0.7 , $p = 0.009$) compared to non-AERD patients. The modified Lund–Mackay score was also higher in AERD patients (36.07 ± 10.5 vs. 27.69 ± 9.9 , $p = 0.021$), indicating an association with increased intraoperative bleeding.

Conclusion. Patients with AERD have increased intraoperative bleeding and reduced surgical field visibility. The modified Lund–Mackay score may help predict bleeding risk, highlighting the need for individualized preoperative strategies to minimize surgical complications.

Keywords: sinusitis, nasal polyps, aspirin-exacerbated respiratory disease, endoscopy, bleeding.

УДК 616.216-002-006:616-072.1:616-089.811/.814:615.2

І. А. Молдованов, Д. Д. Заболотна

ОЦІНКА ФАКТОРІВ РИЗИКУ ІНТРАОПЕРАЦІЙНОЇ КРОВОТЕЧІ ПРИ ЕНДОСКОПІЧНІЙ ХІРУРГІЇ У ПАЦІЄНТІВ ЗІ ХРОНІЧНИМ ПОЛІПОЗНИМ РИНОСИНУСИТОМ ТА АСПІРИНОВОЮ ТРІАДОЮ (AERD)

Державна установа «Інститут отоларингології імені проф. О. С. Коломійченка Національної академії медичних наук України», Київ, Україна

У статті представлено результати дослідження факторів, які впливають на інтраопераційну кровотечу під час ендоскопічної ендонасальної хірургії у пацієнтів із хронічним поліпозним риносинуситом (ХРСзНП), асоційованим з аспірин-екзацербованим респіраторним захворюванням (AERD). Вивчені дані 40 пацієнтів, які становили дві групи: з AERD ($n = 27$) та без AERD ($n = 13$). Встановлено, що пацієнти з AERD мали значно вищий рівень періопераційної крововтрати ($161,9 \pm 39,5$ мл проти $108,5 \pm 45,0$ мл, $p = 0,001$), а також гіршу візуалізацію операційного поля за шкалою Boezaarta ($3,26 \pm 0,7$ проти $2,54 \pm 0,7$, $p = 0,009$). Виявлено також більшу поширеність поліпозного процесу у пацієнтів з AERD за модифікованою шкалою Lund–Mackay ($36,07 \pm 10,5$ проти $27,69 \pm 9,9$, $p = 0,021$), що дає можливість використовувати цей показник як прогнозічний маркер ризику інтраопераційної крововтрати. Результати дослідження можуть бути використані для оптимізації передопераційного ведення пацієнтів з AERD з метою профілактики ускладнень під час хірургічного втручання.

Ключові слова: синусит, назальні поліпи, аспірин-індуковане респіраторне захворювання, ендоскопія, кровотеча.

Introduction

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common inflammatory disease of the upper respiratory tract characterized by chronic inflammation of the mucous membrane of the nasal cavity and paranasal sinuses,

resulting in the formation of nasal polyps. This condition significantly impairs patients' quality of life due to persistent nasal obstruction, mucous and/or purulent discharge, impaired olfaction, and chronic facial pain. According to recent data, CRSwNP occurs in approximately 2–4% of the adult population [15]. One of the most effective surgical treatments for CRSwNP is endoscopic endonasal surgery, which allows for the removal of polyps, improved sinus ventilation, and restoration of normal function of the nose and paranasal sinuses. Evidence shows that the use of modern endoscopic techniques significantly reduces

© I. A. Moldovanov, D. D. Zabolotna, 2025

Стаття поширюється на умовах ліцензії

operative trauma and improves surgical outcomes [11, 12].

A distinct form of CRSwNP is the polyposis rhinosinusitis associated with intolerance to nonsteroidal anti-inflammatory drugs, known as aspirin-exacerbated respiratory disease (AERD), which is characterized by the triad of bronchial asthma, hypersensitivity to cyclooxygenase-1 (COX-1) inhibitors, and the presence of nasal and paranasal sinus polyps. Patients with AERD typically exhibit a more severe disease course and a higher risk of polyp recurrence after surgery. Laidlaw et al. indicate that AERD occurs in 7% of patients with CRSwNP and is characterized by significantly greater resistance to standard treatments [5]. In addition, this group of patients are at increased risk of intraoperative bleeding, which complicates surgical management and may increase the risk of postoperative complications [5].

Recent studies show that patients with AERD often have elevated IgE levels, associated with allergic responses and enhanced inflammation. IgE plays a key role in the pathophysiology of allergic diseases and contributes to chronic airway inflammation [7]. According to Mullol et al., elevated IgE levels in patients with AERD correlate with disease severity and increased risk of intraoperative bleeding during endoscopic procedures [4, 9]. This is due to IgE-mediated inflammation, which increases vascular permeability and bleeding risk. Studies also indicate that optimal management of anticoagulant therapy before surgery can significantly reduce the risk of intraoperative bleeding [10].

Objective. To analyze factors contributing to increased intraoperative bleeding in patients with CRSwNP and AERD during endoscopic endonasal surgery. The study will also compare intraoperative bleeding between CRSwNP patients with and without AERD, which will allow determination of management differences between these two groups and the development of recommendations to optimize surgical treatment.

Materials and Methods

To achieve the objective and accomplish the tasks, from 2023 to 2024, clinical and laboratory data of 40 patients were analyzed: including 17 females (42.5%) and 23 males (57.5%), aged 20–70 years (mean age 45.9 ± 13.2 years), who underwent surgical treatment for “Chronic rhinosinusitis with nasal polyps” (J32.0 Chronic sinusitis, J32.4 Chronic pansinusitis, J33 Nasal polyp) – “Endoscopic endonasal pansinusotomy (EEP)” at the clinic of the State Institution “O. S. Kolomiichenko Institute of Otolaryngology of the National Academy of Medical Sciences of Ukraine.” The study was approved by the Committee on Bioethics and Deontology of the State Institution “O. S. Kolomiichenko Institute of Otolaryngology of the National Academy of Medical Sciences of Ukraine” (Protocol No. 22/12 dated 28.12.2021) and conducted in accordance with the Declaration of Helsinki. All patients provided written informed consent for the processing of their personal and clinical data for scientific purposes. Among comorbid conditions, 13 (32.5%) patients had hypertrophy of the inferior nasal turbinates, 20 (50%) had nasal septal deviation (J34.2), 12 (30%) patients had bronchial asthma (J45), and 27 (67.5%) had AERD. Clinical characteristics

and parameters, in addition to age and sex, included: primary diagnosis and comorbidities, medical and personal history, body mass index, and intraoperative blood pressure indicators.

General clinical blood test parameters were analyzed (platelet count, ESR, % eosinophils in the leukocyte count), as well as coagulation profile (clotting time, prothrombin index, international normalized ratio). The extent of the polypoid process was assessed by endoscopic examination of the nasal cavity (Lund–Kennedy) and CT of the paranasal sinuses (modified Lund–Mackay scale).

Objective indicators of chronic rhinosinusitis were evaluated using the endoscopic scoring system (Lund–Kennedy), which assesses pathological visual findings in the nose and paranasal sinuses, including polyps, discharge, edema, scarring, and crust formation (the modified Lund–Kennedy score includes polyps, edema, and discharge, and has high inter-rater and test–retest reliability). This scoring system is most relevant for chronic rhinosinusitis with polyposis for evaluating pre- and postoperative states in endoscopic sinus surgery [8, 16].

The duration of the endoscopic stage (minutes), surgical field visibility, assessed using the Boezaart scale – and total perioperative blood loss (mL) were evaluated and analyzed. The surgical field visualization scale proposed by Andre P. Boezaart is an instrument for assessing the quality of the operative field during surgeries, particularly endoscopic procedures on the nasal sinuses. It helps objectively determine the degree of bleeding and its impact on visibility during surgery.

Boezaart scale:

- 0 points: no bleeding.
- 1 point: minimal bleeding; isolated drops of blood that do not interfere with the surgical process.
- 2 points: light bleeding; periodic suctioning is required, visibility remains satisfactory.
- 3 points: moderate bleeding; frequent suctioning, brief loss of clarity of the surgical field.
- 4 points: significant bleeding; continuous suctioning, visibility markedly compromised.
- 5 points: massive bleeding; surgery becomes impossible due to complete lack of visualization.

This scale is widely used in studies assessing the influence of different anesthetic methods on surgical field quality [1, 13].

All cases were divided into two groups: study group (with AERD) – 27 (67.5%) patients; and control group (without AERD) – 13 (32.5%) patients.

Research materials were statistically analyzed using parametric and non-parametric methods. Data accumulation, correction, systematization, and visualization processed and visualized using Microsoft Excel. Statistical analysis was performed using Orange3-3.36.2 software. For quantitative indicators with normal distribution, data were combined into variation series in which arithmetic means (M) and standard errors (m) were calculated. Nominal data were described by absolute numbers and percentages. When comparing mean values in normally distributed quantitative datasets, Student's t-test was calculated. Obtained t-test values were compared with critical values. Differences were considered statistically significant at $p < 0.05$.

Comparison of nominal data was performed using Pearson's χ^2 test, which allows assessment of the significance of differences between the actual number of results or qualitative characteristics in each category and the theoretical number expected under the null hypothesis. The χ^2 value was compared with critical values for $(r-1) \times (c-1)$ degrees of freedom. If the obtained value exceeded the critical value, a statistical association between the studied risk factor and the outcome was concluded.

The Pearson correlation coefficient r_{xy} was used to assess the strength of association between quantitative indicators with normal distribution. The statistical significance of the correlation was evaluated using the t-test. The obtained t value was compared with the critical value for a given significance level and degrees of freedom $n-2$. Correlation coefficients r_{xy} were interpreted according to Chaddock's scale (Table 1).

Table 1
Chaddock's scale

Correlation coefficient value r_{xy}	Characteristic of the strength of the correlation
less than 0.1	no correlation
0.1–0.3	weak
0.3–0.5	moderate
0.5–0.7	noticeable
0.7–0.9	strong
0.9–0.99	very strong

To study correlation between phenomena represented by quantitative data with a non-normal distribution, the non-parametric Spearman rank correlation coefficient was used. Statistical significance of correlation was assessed by the t-test. If the calculated t value was less than the critical value for the given degrees of freedom and significance level, the correlation was considered non-significant; if greater, the correlation was considered statistically significant. Correlation coefficients ρ were also interpreted according to Chaddock's scale.

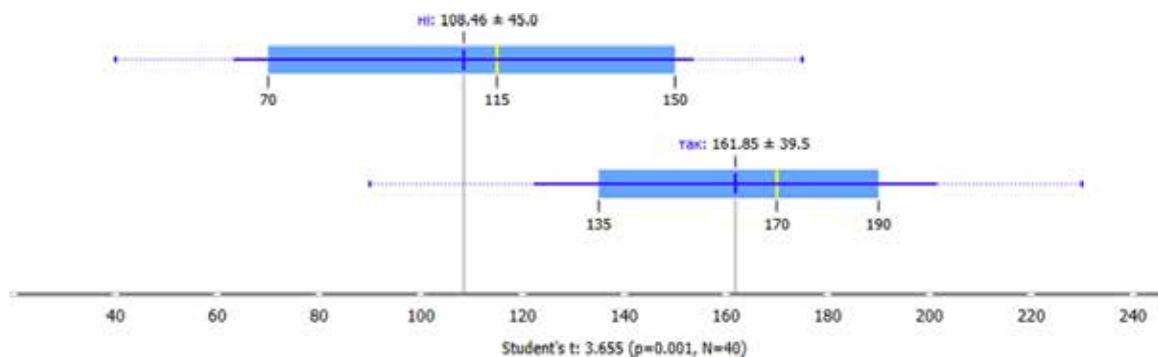
Research results and their discussion

Both groups had no statistically significant differences in the majority of the analyzed clinical and laboratory parameters, meaning that the cases included in the study adequately represent the object and subject of the research (Table 2), and thus the obtained results and conclusions can be considered well-grounded.

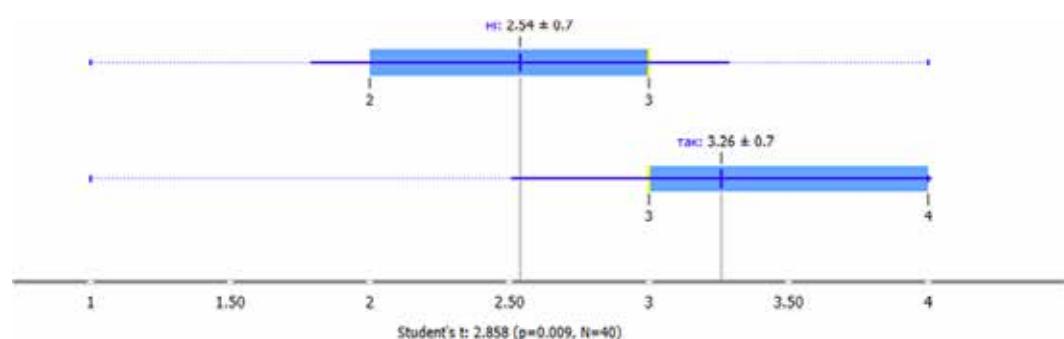
The parameter "total perioperative blood loss in mL" was significantly and statistically higher in patients of the study group (with AERD): mean values 161.9 ± 39.5 mL vs. 108.5 ± 45.0 mL (Student's t-test = 3.655, $p = 0.001$), as shown in Figure 1. At the same time, the minimum and maximum values of this parameter also differed between the groups.

Similar group differences were found in the Boezaart score (visibility of the surgical field during endoscopic surgery (bleeding level)) – a significantly and statistically higher score was observed in patients of the study group (with AERD): mean values 3.26 ± 0.7 vs. 2.54 ± 0.7 (Student's t-test = 2.858, $p = 0.009$), as shown in Fig. 2.

A statistically significantly higher modified Lund–Mackay score was also observed in patients of the study group (with AERD): mean values 36.07 ± 10.5 vs. 27.69 ± 9.9 (Student's t-test = 2.456, $p = 0.021$), as shown in Figure 3, which may serve as a prognostic criterion (factor) – an assessment of the potential expected blood loss during endoscopic endonasal pansinusotomy already at the stage of preoperative preparation.


The parameters "total perioperative blood loss in mL" and the Boezaart score had a moderate positive correlation (Pearson's $r_{xy} = +0.615$), and did not differ between the groups (Fig. 4), which may indicate the independence of the Boezaart score on the patient's underlying pathology.

In contrast, "total perioperative blood loss in mL" differed substantially between the groups depending on the duration of the endoscopic stage: it had a strong positive correlation (Pearson's $r_{xy} = +0.73$) in the control group (patients without AERD) and did not depend on the duration of surgery in patients of the study group (with AERD), although it was statistically significantly higher in


Table 2

Analyzed clinical and laboratory indicators in groups

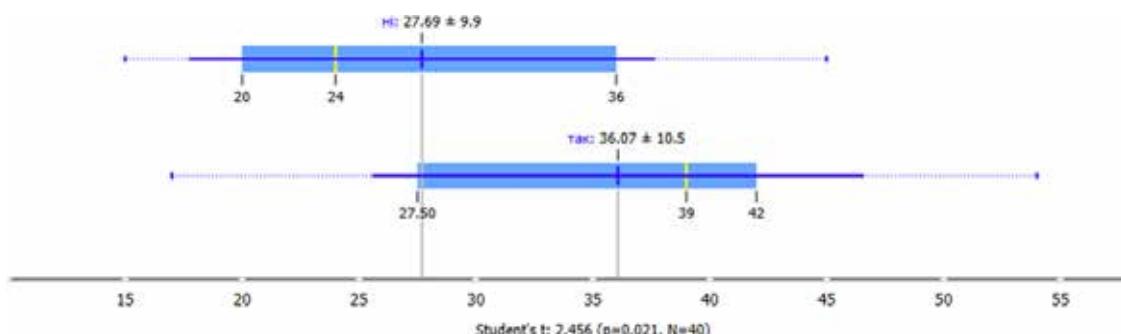

Characteristics and indicators	Study group (n = 27)	Control group (n = 13)	Level of significance of differences
Age	47.7 ± 13.2	42.2 ± 11.7	$p = 0.2$
Gender: female male	25.0% 42.5%	17.5% 15.0%	$p = 0.5$
Body Mass Index	27.0 ± 4.3	26.1 ± 4.4	$p = 0.6$
Systolic Blood Pressure (SBP), mmHg	68.4 ± 12.2	72.5 ± 17.8	$p = 0.5$
Platelet Count, $\times 10^9/L$	270.2 ± 56.7	262.9 ± 52.7	$p = 0.7$
ESR, mm/hour	7.0 ± 4.5	5.1 ± 3.2	$p = 0.1$
Eosinophils in the Leukocyte Formula, %	3.2 ± 2.5	3.1 ± 2.6	$p = 0.9$
Coagulation Time, s	236.8 ± 24.6	227.7 ± 12.5	$p = 0.1$
Prothrombin Index, %	95.8 ± 7.4	93.9 ± 6.3	$p = 0.4$
International Normalized Ratio	1.06 ± 0.09	1.07 ± 0.08	$p = 0.6$
Duration of the Endoscopic Stage of Surgery, min	95.9 ± 22.8	98.9 ± 38.0	$p = 0.8$
Lund–Kennedy scale score	10.3 ± 1.6	10.0 ± 2.0	$p = 0.7$

Fig. 1. Boxplot of the distribution of “total perioperative blood loss in mL” in patients of the study group (“yes”) and control group (“no”)

Fig. 2. Boxplot of the distribution of the Boezaart score in patients of the study group (“yes”) and control group (“no”)

Fig. 3. Boxplot of the distribution of the modified Lund–Mackay score in patients of the study group (“yes”) and control group (“no”)

this group (Fig. 5). This may indicate the significant clinical relevance of AERD – whenever such pathology is present, substantial blood loss during endoscopic sinus surgery in chronic rhinosinusitis with nasal polyps should always be anticipated, predicted, and prevented.

Correlation between other characteristics and parameters was absent, weak, or of no substantial clinical significance in the context of the present study.

The results of our study confirm the data of other authors regarding the distinct clinical and pathophysiological features of AERD patients compared to patients without AERD. According to the recommendations of the European Academy of Allergy and Clinical Immunology (EAACI), NSAID-induced respiratory disease is characterized by

chronic eosinophilic inflammation involving both the upper and lower airways, and manifests as a severe course of chronic rhinosinusitis with nasal polyps and bronchial asthma [4]. The pathogenesis of AERD is associated with disturbances in arachidonic acid metabolism, particularly through the blockade of cyclooxygenase-1 (COX-1), which leads to a deficiency of prostaglandin E2 (PGE2) and an excess of leukotrienes, which are potent mediators of inflammation [4].

In our study, the significantly higher blood loss and worse visibility of the surgical field in patients with AERD can be explained precisely by this enhanced eosinophilic inflammation, which is also confirmed by the results of other authors. In particular, Kowalski et al. (2018) noted

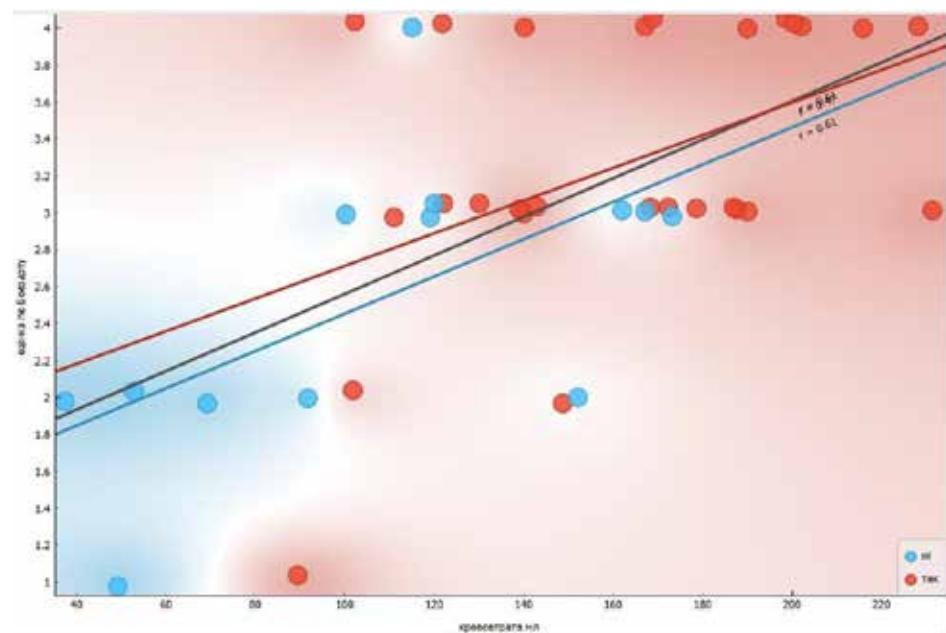


Fig. 4. Correlation between “total perioperative blood loss in mL” and the Boezaart score in patients of the study group (“yes”) and control group (“no”)

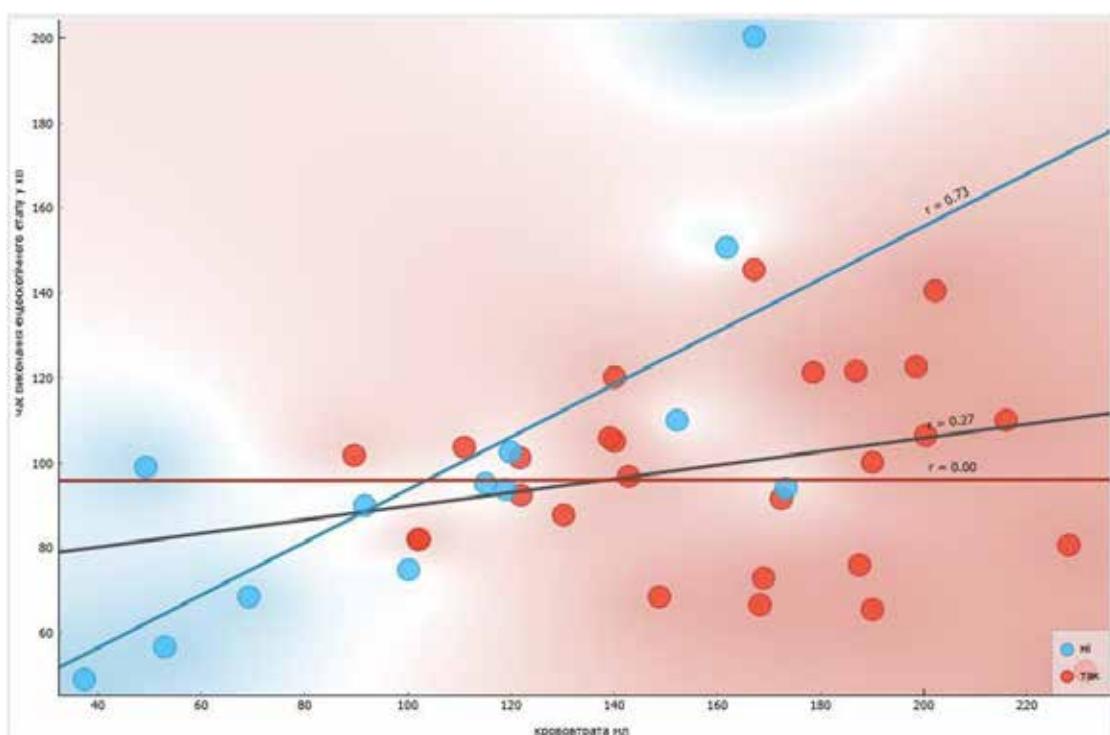


Fig. 5. Correlation between “total perioperative blood loss in mL” and “duration of the endoscopic stage in minutes” in patients of the study group (“yes”) and control group (“no”)

that patients with AERD exhibit pronounced eosinophilic infiltration of the nasal mucosa, increased levels of cysteinyl leukotrienes and PGD2, which contribute to chronic inflammation and polypoid tissue transformation [3]. This, in turn, leads to more severe disease course of chronic rhinosinusitis with nasal polyps and increases perioperative risks, including elevated intraoperative blood loss.

The obtained results are consistent with data from a domestic researcher who also reported high intraoperative bleeding in patients with AERD and emphasized the importance of preoperative preparation to provide adequate visualization of the surgical field. In his work, the use of aminocaproic acid (ACA) contributed to a gradual reduction of bleeding and

improvement of the surgical field to a level of 4–5 points. At the same time, unlike his study, in our work no changes were found in general coagulation parameters, but a significant impact of the extent of the polypoid process (according to the Lund–Mackay scale) on the level of perioperative blood loss was established. This indicates that, in addition to coagulation mechanisms, local inflammatory factors and vascular permeability play an important role in bleeding in patients with AERD, which must be considered during preoperative planning and therapy selection [2].

Thus, a comprehensive assessment of patients with AERD, taking into account the severity of the inflammatory process and the extent of polypoid changes, is necessary to optimize treatment strategies, reduce surgical risks, and improve postoperative outcomes.

Conclusions

Our study showed that intraoperative blood loss in patients with chronic rhinosinusitis with nasal polyps and

AERD significantly exceeds the corresponding indicator in patients without AERD. This requires more careful planning of surgical interventions, taking into account the associated risks.

Assessment using the Boezaart scale confirmed significantly worse visualization of the surgical field in patients with AERD, which complicates the course of surgery and increases the risk of complications. The extent of the polypoid process according to the Lund–Mackay scale is an important prognostic criterion for the risk of increased bleeding.

It was also found that in patients with AERD, the level of blood loss does not depend on the duration of the surgery, which may indicate the key role of the pathogenetic features of the disease.

The obtained data support the need for enhanced preoperative preparation, including individualized hemostatic therapy and extended diagnostics to predict and prevent intraoperative bleeding.

BIBLIOGRAPHY

1. Bafna U, Sharma P, Singhal RK, Gurjar SS, Bhargava SK. Comparison of hypotensive properties of dexmedetomidine versus clonidine for induced hypotension during functional endoscopic sinus surgery: a randomised, double-blind interventional study. *Indian J Anaesth.* 2021; 65(8): 579–585. DOI: 10.4103/ija.IJA_57_21.
2. Di Mauro R, Lucci F, Martino F, et al. The role of intraoperative stroke volume variation on bleeding during functional endoscopic sinus surgery. *Minerva Anestesiol.* 2018; 84(11): 1246–1253. DOI: 10.23736/S0375-9393.18.12401-1.
3. Koshelev IV. Polipoznyi rhinosinusyt, asotsiiovanyi z neperenosymistiu aspirynu: mekhanizmy formuvannia, diahnostyka ta likuvannia [dissertation]. Ivano-Frankivsk: Ivano-Frankivskyi Natsionalnyi Medychnyi Universytet; 2018. 295 p.
4. Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of NSAID-Exacerbated Respiratory Disease (N-ERD) – a EAACI position paper. *Allergy.* 2019; 74(1): 28–39. DOI: 10.1111/all.13599.
5. Laidlaw TM, Boyce JA. Updates on immune mechanisms in aspirin-exacerbated respiratory disease. *J Allergy Clin Immunol.* 2023; 151(2): 301–309. DOI: 10.1016/j.jaci.2022.08.021.
6. Levin M, Chan Y, Sommer DD, Thamboo A, Lee JM. Quantifying surgical completeness in patients with aspirin-exacerbated respiratory disease. *J Otolaryngol Head Neck Surg.* 2023; 52(1): 83. Published 2023 Dec 17. DOI: 10.1186/s40463-023-00682-1.
7. Li Z, Zeng M, Deng Y, et al. 15-Lipoxygenase 1 in nasal polyps promotes CCL26/eotaxin 3 expression through extracellular signal-regulated kinase activation. *J Allergy Clin Immunol.* 2019; 144(5): 1228–1241. e9. DOI: 10.1016/j.jaci.2019.06.037.
8. Lund VJ, Kennedy DW. Staging for rhinosinusitis. *Otolaryngol Head Neck Surg.* 1997 Sep; 117(3 Pt 2): S35–40. DOI: 10.1016/S0194-59989770005-6.
9. Mullol J, Azar A, Buchheit KM, Hopkins C, Bernstein JA. Chronic rhinosinusitis with nasal polyps: Quality of life in the biologics era. *J Allergy Clin Immunol Pract.* 2022; 10(6): 1434–1453. e9. DOI: 10.1016/j.jaip.2022.03.002.
10. Schlosser RJ, Storck K, Smith TL, et al. Impact of postoperative endoscopy upon clinical outcomes after endoscopic sinus surgery. *Int Forum Allergy Rhinol.* 2016; 6(2): 115–123. DOI: 10.1002/alr.21651.
11. Shushliapina NO, Potapov SM, Horhol NY, Avrunin OG, Nosova YV, Abdelhamid IY. Clinical aspects and cytomorphological and functional features of the nasal mucosa in chronic pathology of the intranasal structures and their verification from CT data. *Ukrainian Journal of Radiology and Oncology.* 2023; 31(1): 38–59. <https://doi.org/10.46879/ukrj.1.2023.38-59>
12. Smith TL, Mace JC, Rudmik L, et al. Comparing surgeon outcomes in endoscopic sinus surgery for chronic rhinosinusitis. *Laryngoscope.* 2017; 127(1): 14–21. DOI: 10.1002/lary.26095.
13. Yang W, Gou H, Li H, et al. Intravenous tranexamic acid improves the intraoperative visualization of endoscopic sinus surgery for high-grade chronic rhinosinusitis: a randomized, controlled, double-blinded trial. *Front Surg.* 2021; 8: 771159. DOI: 10.3389/fsurg.2021.771159.
14. Zhang K, Wang L, Qi F, Meng T. Hypotensive Levels on Endoscopic Sinus Surgery Visibility: A Randomized Non-Inferiority Trial. *Laryngoscope.* 2024; 134(2): 569–576. DOI: 10.1002/lary.30867.
15. Zhang L, Zhang Y, Gao Y, et al. Long-term outcomes of different endoscopic sinus surgery in recurrent chronic rhinosinusitis with nasal polyps and asthma. *Rhinology.* 2020; 58(2): 126–135. DOI: 10.4193/Rhin19.184.
16. Zinreich SJ. Imaging for staging of rhinosinusitis. *Ann Otol Rhinol Laryngol Suppl.* 2004; 193: 19–23. DOI: 10.1177/00034894041130S506.

Надійшла до редакція 20.04.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування ivankrив2508199528@gmail.com

B. П. Міщенко <https://orcid.org/0009-0008-1888-7611>

B. В. Міщенко <http://orcid.org/0000-0002-5951-3463>

КЛІНІКО-ЛАБОРАТОРНІ ОСОБЛИВОСТІ ПЕРЕБІГУ ПЕРШОЇ ПОЛОВИНИ ВАГІТНОСТІ В ПЕРІОД ВІЙНИ В УКРАЇНІ

Одеський національний медичний університет, Одеса, Україна

УДК 618.3-074/-078(477)"364"

В. П. Міщенко, В. В. Міщенко

КЛІНІКО-ЛАБОРАТОРНІ ОСОБЛИВОСТІ ПЕРЕБІГУ ПЕРШОЇ ПОЛОВИНИ ВАГІТНОСТІ В ПЕРІОД ВІЙНИ В УКРАЇНІ

Одеський національний медичний університет, Одеса, Україна

Досліджено особливості перебігу першої половини вагітності під час війни в Україні та запропоновано персоніфікований алгоритм ведення жінок. Обстежено 30 жінок у терміні вагітності від 5 до 20 тижнів. Психоемоційний стан обстежених жінок оцінено як високий, виявлено підвищений рівень специфічних сумарних антитіл до Helicobacter pilory, біль у попереку, захворювання щитоподібної залози, гіпертонус матки, часткове відшарування хоріона, аномальні вагінальні виділення, дисплазію шийки матки. Визнано низький вміст і дефіцит вітаміну D. Особливості перебігу вагітності: висока психоемоційна напруга, хроніострес, гіповітаміноз вітаміну D, дисбаланс вмісту магнію, кортизолу, що потребує своєчасної персоніфікованої корекції.

Ключові слова: клініко-лабораторні особливості перебігу вагітності, війна в Україні.

UDC 618.3-074/-078(477)"364"

V. P. Mishchenko, V. V. Mishchenko

CLINICAL AND LABORATORY FEATURES OF THE FIRST HALF OF PREGNANCY DURING THE WAR IN UKRAINE

Odesa National Medical University, Odesa, Ukraine

Introduction. Chronic stress is a violation of the stress modulation system – a neuro-endocrine-metabolic reaction experienced by most young women today, which is associated with the war in Ukraine. **The purpose of the study** was to determine the features of the first half of pregnancy during the full-scale war in Ukraine and a personalized algorithm for managing women.

Materials and methods. We observed 30 women of reproductive age in the period of pregnancy from 5 to 20 weeks from the number of residents of the city of Odessa and the region, internally displaced persons.

Research results and discussion. The psycho-emotional state of the examined women was considered high. The patients were found to have high levels of specific total antibodies to the Helicobacter pilory antigen, pain in the lower back, thyroid disease. Late menarche was in 16.7%, early – in 13.3%, irregular menstrual cycle – in 23.3% of the examined women. Pregnant women were found to have uterine hypertonicity, partial detachment of the chorion, colpitis, cervical erosion. Low content and deficiency of vitamin D were determined.

Conclusions. During the full-scale war in Ukraine, every woman makes maximum efforts to preserve pregnancy. During the war years, artificial abortion is a negative trend. The frequency of stillbirths in the first trimester remains high. The features of pregnancy in the first half include: high psycho-emotional stress, chronic stress on the background of vitamin D hypovitaminosis, imbalance of the content of the trace element magnesium, cortisol, which requires timely personalized correction. We consider it appropriate to recommend determining the assessment of the psycho-emotional state of women at the stage of pregnancy planning and by trimesters, the levels of vitamin D, trace element magnesium, cortisol, progesterone and correction of their content using personalized micronutrient and drug therapy.

Keywords: clinical and laboratory features of pregnancy, war in Ukraine.

Вступ

Вагітність, пологи, післяпологові періоди – це фізіологічні процеси, які перебігають за активною участі всіх органів і систем організму жінки. Проте гестаційний процес є певним додатковим навантаженням на організм вагітної, який реалізується нестійким напруженням рівноваги гомеостазу та розвитком компенсаторно-адаптаційних змін у кожному триместрі [4; 11].

Компенсаторно-адаптаційні зміни в організмі вагітної жінки за фізіологічним типом підвладні негативному впливу багатьох факторів, зокрема вихідному стану організму (психологічному, наявності соматич-

них захворювань, гінекологічної патології, загострень цих станів тощо), стресу (гострого й хронічного), гострих респіраторних вірусних інфекцій, інфекційних захворювань, у тому числі COVID-19, що реалізувався у формі пандемії. Негативні наслідки для здоров'я людей різних вікових груп після перенесеного COVID-19 мали місце напередодні повномасштабної війни у нашій країні, що ускладнювало перебіг захворювання та його негативні наслідки для організму людей [7; 13].

На посилення негативних змін психологічного стану вагітної впливають як особисті її властивості, так і невирішенні конфлікти, генетична схильність до депресій, гормональні зміни в організмі та багато іншого. Під час вагітності виникають і дискомфортні стани (втома, млявість, нудота, закрепи, болі у спині, геморой тощо), які доцільно диференціювати із загостренням соматичних захворювань, наприклад захворюваннями шлун-

© В. П. Міщенко, В. В. Міщенко, 2025

Стаття поширюється на умовах ліцензії

ково-кишкового тракту (гастрити, хронічні закрепи, хронічні коліти тощо), хронічним гемороєм тощо. Клінічні ознаки цих захворювань посилюються внаслідок гормональних змін в організмі, у тому числі релаксуючої дії гормону вагітності – прогестерону [10].

У кожної окремої жінки перша емоційна реакція на вагітність різна. В одних жінок виникає радість, в інших – страх. Це особливо гостро проявляється в першій місяці повномасштабної війни в Україні. Жінка переживає певний психоемоційний стрес (неспеціфічна реакція організму вагітної жінки на зовнішні фактори). Сустрес здебільшого визваний позитивними емоціями, наслідком чого є збудження організму [1]. Наприклад, реакція жінки на «позитивний тест» на бажану очікувану вагітність, перший крик немовляти в пологах тощо. В інших жінок виникає негативний тип стресу (дистрес, який, навпаки, провокує порушення гомеостазу організму). За цього стану виникають зміни в усіх обмінах речовин. Так, підвищується рівень вільних радикалів, виснажується кортизол наднирників, зростає рівень пролактину, знижується вміст прогестерону, виникає клітинна патологія, а саме порушується цілісність мітохондрій тощо [9]. Хронічний стрес – це порушення системи модуляції стресу – нейро-ендокринно-метаболічна реакція, яка проявляється клінічно (млявістю, втомою, головним болем, нудотою тощо) і лабораторно залежно від стадії процесу, особливо рівнем кортизолу та біологічними речовинами, що пов’язані з його обміном (мікроелементи магній, калій, макроелемент кальцій, вітамін D та інші). Хронічний стрес переживають більшість молодих жінок сьогодення, що пов’язано з війною в Україні. Вищепередане визначило мету нашого дослідження.

Мета дослідження полягала у визначенні особливостей перебігу першої половини вагітності в період повномасштабної війни в Україні та персоніфікованого алгоритму ведення жінок.

Матеріали та методи дослідження

Під нашим спостереженням перебувало 30 жінок репродуктивного віку у терміні вагітності від 5 до 20 тижнів із числа мешканок міста Одеси та області,

внутрішньо переміщених осіб (ВПО). Проведене обстеження враховувало рекомендації наказу МОЗ України № 1437 «Нормальна вагітність» [11]. Вивчено анамнестичні дані (соматичний, акушерсько-гінекологічний, місце мешкання, спосіб харчування тощо). Додатково визначали рівні мікроелемента магнію і кортизолу в сироватці крові та добовій сечі; вітаміну D загального і прогестерону в сироватці крові. Оцінка психоемоційного стану обстежуваних жінок виконана за Еденбургською шкалою (наказ МОЗ України № 1437) [11].

Дослідження виконано відповідно до принципів Гельсінської декларації. Протокол дослідження затверджено Локальним етичним комітетом (№ 3 від 03.02.2025). На проведення дослідження було отримано інформаційну згоду пацієнтів.

Статистична обробка результатів виконувалась із застосуванням програми STATISTICA 10 Enterprise Portable (2011, ENG) з визначенням середньої величини (M), середньої похибки (m). Достовірність отриманих результатів визначалася за допомогою критерію Ст’юдента з $p < 0,05$ та менше.

Результати дослідження та їх обговорення

У тяжкі роки повномасштабної війни в Україні на особливу увагу заслуговує вплив психоемоційного стану жінки до та під час вагітності. Психологічний стан вагітної характеризується посиленням емоційного відчуття, у тому числі страху (емоція, що виникає через відчуття небезпеки), дратливості й нервозності (стани сильної збудливості нервової системи на тривалі чи тимчасові незначні подразнення), депресії (захворювання, яке характеризується постійним пригніченням, психічними розладами, тривожністю) тощо. Дратливість може посилюватися за наявності деяких соматичних захворювань (наприклад, недостатньої функції щитовидної залози). Так, гіпотиреоз клінічно проявляється змінами настрою, швидкою стомлюваністю, незрозумілою надбавкою маси тіла, сухістю шкіри, набряками тощо.

Скарги обстежуваних жінок під час першого звернення до лікаря наведено в таблиці 1.

Таблиця 1

Скарги пацієнтів під час першого звернення до лікаря

Термін вагітності, триместр, $n = 30$

Симптоми	Триместр, $n = 30$			
	Перший		Другий	
	Абс.	%	Абс.	%
Слабкість	19	63,3	10	33,3
Тривожність	21	70,0	20	66,7
Плаксивість	15	50,0	17	56,7
Сторожовий сон	17	56,7	16	53,3
Нудота	8	26,7	4	13,4
Болі внизу живота	30	100	30	100
Виділення крові із статевих шляхів	7	23,3	2	6,7
Рясні білі	6	20,0	8	13,3
Болі в ділянці попереку	14	46,7	6	20,0
Закрепи	7	23,3	8	13,3
Болі в ділянці епігастрії	8	13,3	7	23,3

КЛІНІЧНА ПРАКТИКА

Оцінка психоемоційного стану обстежуваних жінок за Еденбургською шкалою (наказ МОЗ України № 1437) [9] розцінювалась як висока (понад 12 балів) у 66,7% обстежуваних, особливо в жінок із числа ВПО. На слабкість, тривожність, плаксивість вказували 61,1% вагітних у І триместрі та 52,2% – у ІІ. Показник сторожового сну мав тенденцію до зниження за терміном вагітності на фоні проведеної терапії.

Визначення терапевтичних заходів мало персоніфікований характер з урахуванням анамнестичних даних (таблиця 2), результатів лабораторних досліджень (таблиця 3), а саме визначення рівня магнію і кортизолу в сироватці крові (о 8-й годині ранку), добовій сечі, вмісту вітаміну D загального в сироватці крові (таблиця 1), даних УЗД (таблиця 4).

Визначення даних анамнезу в обстежуваних жінок наведено в таблиці 2.

Скарги на нудоту зменшувалися на 50% у ІІ триместрі на фоні проведеної терапії. Нудота є суб'єктивною ознакою раннього токсикозу. Частота її виникнення зменшується вдвічі у ІІ триместрі. Проте 70,0% жінок були обтяжені хронічними гастритами, 83,3% – гастро-дуоденітом (табл. 2).

У 86,6% вагітних виявлено високі рівні специфічних сумарних антитіл до антигену *Helicobacter pylori*. За нашими даними, високі титри специфічного сумарного антигену *Helicobacter pylori* визначаються у 81,3% вагітних жінок, обтяжених клінічними симптомами

раннього токсикозу. Більшість із них вказують на передній хронічний гастрит (гіпо-, гіпер-, нормоацідний). Цікавим є факт 100% визначення високих значень цих показників у жінок в'єтнамської національності. Пояснення цього факту полягає у високій контагіозності бактерії та способу життя цих людей.

Прогресуванню захворювання сприяють наявні хронічні захворювання шлунково-кишкового тракту, нерациональне, незбалансоване харчування, часта зміна місця постійного мешкання тощо в більшості жінок. Призначення питного режиму (лужні води), дієтотерапії та нутрієнтної терапії (імбир, лимон, овочі, фрукти тощо) сприяло позитивним результатам лікування.

Наведені показники результатів обстеження узгоджуються із частотою патологічних симптомів, що клінічно мали місце в обстежуваних жінок, а саме: болі внизу живота й попереку, закрепи, нудота (табл. 1). У 9 (30,0%) із 14 (46,7%) жінок були болі в ділянці попереку в І триместрі внаслідок корінцевих болів, що підтверджено висновком лікаря-невропатолога з рекомендаціями мануальної терапії. Близько 20% обстежуваних мали захворювання щитоподібної залози. Наявність зазначених захворювань, у тому числі гіпотиреозу, може сприяти порушенню метаболізму (всмоктуванню, адсорбції, абсорбції) вітаміну D, магнію і кальцію.

Порушення менструального циклу (17,8%), гормональна дисфункція, зокрема пізне, раннє менархе, невиношування вагітності (16,7%), можуть мати пря-

Таблиця 2

Дані анамнезу в обстежуваних жінок

Анамнез, n = 30					
Соматичний		Акушерсько-гінекологічний			
Нозологія	Абс	%	Нозологія	Абс	%
Гастродуоденіт	25	83,3	Пізнє менархе	5	16,7
Хелікобактеріоз	26	86,6	Раннє менархе	4	13,3
Гастрит	21	70,0	Нерегулярний менструальний цикл	7	23,3
Коліт спастичний	16	53,3	Вагітність I	14	46,7
Анемія	8	26,7	Звичне невиношування	5	16,7
Нейроциркуляторна дистонія	12	40,0	Спонтанний аборт 1	2	6,7
Доліхосігма	1	3,3	Кольпіт	17	56,7
Гіпотиреоз	7	23,3	Ерозія шийки матки	8	26,7
Гіпертиреоз	3	10,0	Мед. аборт	10	33,3
Хронічний піелонефрит	11	36,7			

Таблиця 3

Лабораторні показники (середні) сироватки крові обстежуваних жінок

Показник	Од. виміру. Референтне значення	Триместр, n = 30	
		Перший	Другий
Гемоглобін	105–120 г/л	107 ± 5,4	115 ± 5,5
Ферітін	6–159 нг/мл	13,5 ± 0,68	23,4 ± 1,2
Магній сироватки крові	норма 0,71–0,94 ммоль/л	0,79 ± 0,04	0,89 ± 0,04
Магній у добовій сечі	норма 5 ммоль/24 год і 0,5 ммоль/24 год у разі дефіциту	4,5 ± 0,2	4,7 ± 0,22
Віт D загальний	норма: 30–70 нг/мл; дефіцит: 0–30; передозування – 70–150 нг/мл	13,7 ± 0,68	15,8 ± 0,69
Кортизол сироватки крові	Забір крові о 9 годині ранку: 140–700 нмоль/л	540 ± 27,6	490 ± 24,5
Кортизол у добовій сечі	50,0–190,0 мкг/24	114,0 ± 7,2	110,0 ± 5,5
Прогестерон	I триместр – 11,2–90,0 нг/мл; II триместр – 25,6–89,4 нг/мл	11,0 ± 0,6	25,5 ± 1,3

мий зв'язок із дефіцитом вітаміну D як стероїдного гормону та запальними процесами (41,7%) стінок піхви, шийки матки тощо.

Лабораторні показники крові обстежуваних жінок наведено в таблиці 3.

Референтні значення магнію визначені згідно з настановою 0053 «Дефіцит магнію» від 24.09.2018 [6].

Середній рівень гемоглобіну, феритину в обстежуваних жінок підвищувався у другому триместрі, що можна пояснити превентивною терапією препаратами заліза, нутрієнтою терапією, вітамінно-макро-мікроелементними комплексами, нормалізацією способу та режиму харчування.

Визначення вмісту магнію у сироватці крові, добовій сечі мало принципове значення в нашому дослідженні з огляду на наявні негативні симптоми психо-емоційного стану пацієнтів, клінічні, УЗД-симптоми, загрозу викидня. Адже магній регулює активність нейронів і тим самим запобігає стресу, тривожності, знижує ризик аритмії, запобігає судомам, знижує збудливість нервових клітин, релаксує серцеві м'язи [14]. Високий вміст магнію спостерігається за наявності гіперфункції щитоподібної і парашитоподібної залоз, псоріазі, артритах та інших станах [14]. До органів-мішеней дефіциту магнію належать судини (виникає спазм, гіпертонія), серце (порушення ритму), щитоподібна залоза (гіперфункція), підшлункова залоза (порушується синтез інсуліну), наднирники (виснаження функції) [12].

Відомо, що стрес виникає з різних причин: соціальних (війна в Україні), побутових (проблеми з керівництвом на роботі), через медичні стани тощо. Стрес має системний вплив на організм вагітної жінки: підтримує патологічні зміни в окисно-відновлювих, метаболічних реакціях, у тому числі гормональних. Стрес провокує ендокринні порушення, продукцію глюкокортикоїдів, катехоламінів, підвищує рівень глукози, кортизолу, артеріального тиску, маси тіла [9]. За даними анамнезу, пізнє менархе було у 16,7%, раннє – у 13,3%, нерегулярний менструальний цикл – у 23,3% обстежуваних жінок. Звичне невиношування було у 13,3% (табл. 2).

Надлишкова продукція кортизолу знижує вміст гормону вагітності прогестерону, що клінічно проявляється гестаційними ускладненнями. За результатами дослідження констатовано гіпертонус тіла матки локальний у 36,7% жінок у I триместрі та у 43,3% – у II, часткове відшарування хоріона – у 53,3% і 43,3% відповідно, заоболонкове відшарування у 26,7% і 6,7% відповідно. У першому триместрі середні показники

рівня прогестерону були в межах референтних величин, що більше до нижньої межі норми (11,2–90,0 нг/мл) (таблиця 3).

Природною реакцією на стрес є також підвищення рівня кортизолу. Кортизол (стероїдний гормон, що продукується із холестерину) бере участь у метаболізмі жирів, білків [1]. Секреція кортизолу відбувається з наднирників і залежить від рівня АКТГ, що продукується гіпофізом. Кортизол взаємодіє з репродуктивною, імунною, ендокринною системами. Кортизол може впливати на кожну систему організму і всі органи (серцево-судинну, дихальну, шлунково-кишкового тракту). За наявності гострого стресу кортизол виробляється наднирниками у збільшений кількості, рівень може подвоїтися. У разі хронічного стресу організм може перестати його засвоювати і підвищення рівня кортизолу буде довгострокове [1]. Хронічний стрес асоціюється з неспецифічним запаленням. Понад 40% (41,7%) пацієнтів були обтяжені аномальними вагінальними виділеннями, дисплазією шийки матки (таблиця 2).

Дані УЗД наведені в таблиці 4.

На фоні високої тривожності у близько 40% обстежуваних жінок у першому триместрі мав місце патологічний гіпертонус тіла матки, у другому – у понад 40%. Часткове відшарування хоріона та заоболонкове відшарування становило 80% у першому і 50% у другому триместрах.

Метаболізм макро- і мікроелементів Ca, Mg, вітаміну D тісно взаємопов'язані. Магній є важливим для виробництва енергії, РНК, синтезу ДНК, контролює клітинний цикл, бере участь в обміні іонів Ca, калію. Дефіцит Mg знижує рівень вітаміну D. Навіть невеликі зміни рівнів Mg можуть індукувати токсичність Ca. Всмоктування Ca у тонкій кищці впливає на рівень макро- і мікроелементів у крові. Вітамін D транспортується за допомогою D-зв'язуючого протеїну (VDP). У тканинах печінки фермент CYP2R1 гідроксилює вітамін D. Магній активує дію вітаміну D, оскільки більшість ферментів метаболізму потребують магнію як кофактора [3, 6]. Магній є життєво необхідним кофактором для синтезу вітаміну D. Збільшений рівень магнію збільшує рівень вітаміну D і навпаки [8, 14]. Високий вміст Ca знижує вміст Mg. Останніми роками в практичній медицині визначається масовий дефіцит вітаміну D в організмі вагітних у різні терміни, що є глобальною проблемою у медицині [5]. Вітамін D, Mg і Ca взаємопов'язані за обміном. Магній є кофактором ферментів, що регулюють метаболізм Ca, сприяє продукції 1,25-дигідроксівітаміну D (1,25(OH)2D)

Дані УЗД обстежуваних жінок, $n = 30$

Таблиця 4

Симптоми	Термін вагітності, триместр			
	Перший, $n = 30$		Другий, $n = 30$	
	Абс.	%	Абс.	%
Гіпертонус тіла матки локальний	11	36,7	13	43,3
Часткове відшарування хоріона	16	53,3	13	43,3
Заоболонкове відшарування	8	26,7	2	6,7
Центральне передлежання хоріона	7	23,3	7	23,3
Завмерла вагітність	8	26,7	0	0

і паратормону (ПТГ). Дефіцит магнію може спричиняти зниження рівнів 1,25(OH)D₃, оскільки більшість ферментів, що беруть участь у метаболізмі вітаміну D, залежать від магнію як кофактора. Важлива роль магнію у синтезі вітаміну D. Магній має значення для активації та інактивації вітаміну D. Дефіцит магнію знижує рівні 25(OH)D₃. Вітамін D транспортується в організмі завдяки вітамін D-залежним обмінним процесам [2].

За результатами роботи, у 100% пацієнтів у різni терміни вагітності визначено низький вміст і дефіцит вітаміну D. У більшості жінок (понад 70%) рівень магнію був у межах референтних значень, але більше до нижньої межі норми в сироватці крові. У добовій сечі середньостатистичні показники магнію були більші до верхньої межі норми (4,7 ммол/24 год). Низький рівень вітаміну D, дисбаланс вмісту мікроелемента магнію визначали при вмісті кортизолу в межах референтних величин у сироватці крові і добовій сечі [5, 15].

Вагітність є «біологічною моделлю» дефіциту магнію в організмі жінки. Добова потреба магнію становить 237 мг, під час вагітності – у 1,5–2 рази більше. Клінічні прояви дефіциту магнію у вагітних можуть проявлятися втомою, перепадом настрою, безсонням, депресією, загрозою переривання вагітності (ЗПВ), передчасними пологами (ПП), патологічним прелімінарним періодом, дискоординованою половою діяльністю, аритмією, судомами [8]. Дефіцит магнію може виникати в разі неадекватного / нерационального харчування (мало вживані такі продукти, як зернові, горіхи тощо), що часто спостерігається у молодих жінок. Це пояснюється незнанням важливості цього питання, побутовими факторами (умови мешкання), способом

життя (часта зміна місця мешкання), порушенням всмоктування продуктів харчування. Однією із причин є наявність хронічних захворювань гастродуоденальної, гепатобіліарної систем (дисбактеріоз кишечника, хронічний дуоденіт, хелікобактеріоз). Останнє особливо заслуговує на увагу клініциста за наявності хронічних гастритів, раннього токсикозу в жінок нашого непростого сьогодення.

Висновки

У складні дні сьогодення під час повномасштабної війни в Україні кожна жінка прикладає максимальні зусилля для збереження вагітності. За роки війни є негативною динаміка штучного переривання вагітності. Проте залишається високою частота завмерлих вагітностей у першому триместрі.

До особливостей перебігу вагітності в першій і половині в період війни у нашій країні відносимо: високу психоемоційну напругу, хроніострес на фоні гіповітамінозу вітаміну D, дисбалансу вмісту мікроелемента магнію (кров / сеча), кортизолу (кров / сеча), що потребує своєчасної персоніфікованої корекції.

Вважаємо за доцільне рекомендувати визначення оцінки психоемоційного стану жінок на етапі планування вагітності та за триместрами, рівнів вітаміну D, мікроелемента магнію, кортизолу, прогестерону та корекцію їх вмісту за допомогою персоніфікованої мікронутрієнтної та медикаментозної терапії.

Перспективи подальших розробок присвячені визначенню особливостей клінічних підходів до діагностики та вибору лікувальної тактики за гострої спайкової кишкової непрохідності в сучасних умовах повномасштабної війни в Україні.

ЛІТЕРАТУРА

1. Beery AK, Kaufer D. Stress, social behavior, and resilience: Insights from rodents. *Neurobiology of Stress. Stress Resilience*. 2015; 1: 116–127. DOI: 10.1016/j.ynstr.2014.10.004. ISSN 2352-2895. PMC 4281833. PMID 25562050.
2. Bie L. The Status and Research Progress on Vitamin D. Deficiency and Atrial Fibrillation. *Braz J Cardiovasc Surg*. 2019; Dec 1; 34(5): 605–609. DOI: 10.21470/1678-9741-2018-0322.
3. Carberg C. Vitamin D in the Context of Evolution. *Nutrients*. 2022; jul 22; 15(15): 3018. PMCID: PMC9332464. DOI: 10.3390/nu14153018.
4. Gutor TG, Timchenko NF. Epidemiological analysis and prognosis of miscarriage in Ukraine and Lviv region. *Klinichna ta profilaktychna medytsyna*. 2023; 2: 38–44. (In Ukrainian) [https://doi.org/10.31612/2616-4868.2\(24\).2023.06](https://doi.org/10.31612/2616-4868.2(24).2023.06).
5. Eyles DW. Vitamin D: Brain and Behavior. *IBMR Plus*. 2020 Oct 18; 5(1): e10419. DOI: 10.1002/jbm4.10419.
6. Guideline 00503. Magnesium deficiency. 2018. <http://guidelines.moz.gov.ua/documents/2918?id=ebm00503&Format=pdf> (In Ukrainian).
7. Lakhno IV. The level of pregnancy and childbirth complications among the residents of front-line city of Kharkiv. *Journal of V. N. Karazin Kharkiv National University. Series 'Medicine'*. 2024; 32(3): 306–313. DOI: <https://doi.org/10.26565/2313-6693-2024-50-03>.
8. Li X, Han X, Yang J, et al. Magnesium sulfate provides neuroprotection in eclampsia-like seizure model by ameliorating neuroinflammation and brain edema. *Mol. Neurobiol.* 2017; 54 (10): 7938–7948. <https://doi.org/10.1007/s12035-016-0278-4>.
9. Lovejoy DA, Barsy D. Index. Sex, Stress and Reproductive Success. Chichester, UK: John Wiley & Sons, Ltd. 2011. DOI: 10.1002/9780470979600.index.
10. Mishchenko VP, Mishchenko VV. Problema “operovanoyi matky” u suchasnyi klinichniy praktytsi (ohlyad literatury) [The problem of “operated uterus” in modern clinical practice (literature review)]. *Visnyk problem biologii i medytsyny*. 2024; 3(174): 50–63. (In Ukrainian). DOI: 10.29254/2077-4214-2024-3-174-50-63.
11. Nakaz Ministerstva okhorony zdorovya No. 1437 vid 09.08.2022 "Normal'na vahitnist". (In Ukrainian). Available from: 39072-dn_1437_09_08_2022_dod_2.pdf.
12. Sontia B, Touyz RM. Role of magnesium in hypertension. *Arch Biochem Biophys*. 2007 Feb 1; 458(1): 33–9. DOI: 10.1016/j.abb.2006.05.005. PMID: 16762312.

13. Thacher TD. Evaluating the Evidence in Clinical studies of Vitamin D in Covid-19. *Nutrients*. 2022 Jan 21; 14(3): 464. <https://doi.org/10.3390/nu14030464>.
14. Zhabchenko IA. Mahnii v akusherskii praktytsi: vidomi fakty ta novi mozhlyvosti [Magnesium in obstetric practice: known facts and new opportunities]. *Medychni aspeky zdorovia zhinky*. 2019; 122–123(1–2): 32–38. (In Ukrainian). <https://library.odmu.edu.ua/catalog/518822>.
15. Zmijewski MA. Vitamin D and Human Health. *Int J Mol Sci*. 2019; Jan 3; 20(1): 145. PMCID: PMC6337085. DOI: 10.3390/ijms20010145.

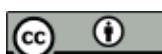
Надійшла до редакція 21.04.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування valentyna.mishchenko@onmedu.edu.ua

V. I. Velychko <https://orcid.org/0000-0002-1936-3421>*D. O. Lahoda* <https://orcid.org/0000-0003-0783-6225>*Ye. O. Tulyantseva* <https://orcid.org/0000-0001-6235-0979>*H. O. Danylchuk* <https://orcid.org/0000-0002-5247-7164>**THE EFFECT OF EDUCATION IN SELF-MANAGEMENT PRINCIPLES
ON THE QUALITY OF LIFE OF PATIENTS WITH TYPE 2 DIABETES MELLITUS**

Odesa National Medical University, Odesa, Ukraine


V. I. Velychko, D. O. Lahoda, Ye. O. Tulyantseva, H. O. Danylchuk**THE EFFECT OF EDUCATION IN SELF-MANAGEMENT PRINCIPLES ON THE QUALITY OF LIFE OF PATIENTS WITH
TYPE 2 DIABETES MELLITUS***Odesa National Medical University, Odesa, Ukraine***Background.** Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases, exerting a substantial negative impact on patients' quality of life (QoL). Education on the basics of diabetes self-management can improve treatment adherence and enhance QoL.**Objective.** To assess the effect of diabetes self-management education on the QoL of patients with T2DM, based on the Audit of Diabetes-Dependent Quality of Life (ADDQoL) questionnaire results.**Materials and methods.** The study included 140 patients with T2DM. Patients were divided into four subgroups according to cognitive status and participation in diabetes self-management education. QoL was assessed using the ADDQoL questionnaire at baseline and after 12 months.**Results.** At baseline, the average weighted impact (AWI) scores were: Ia -1.72 ± 0.41 ; Ib -1.58 ± 0.40 ; IIa -1.45 ± 1.61 ; IIb -1.32 ± 1.49 . After 12 months, a deterioration in AWI was observed in the subgroups without education (Ia: to -2.35 ± 0.43 ; p < 0.05; IIa: to -1.88 ± 1.90 ; p > 0.05), whereas patients who participated in the self-management program demonstrated a significant improvement (Ib: to -1.04 ± 0.31 ; IIb: to -0.79 ± 1.40 ; p < 0.05). A negative correlation was found between glycated haemoglobin (HbA1c) and QoL (r = -0.28; p < 0.05) as well as between body mass index (BMI) and QoL (r = -0.25; p < 0.05), as well as a direct correlation between cognitive functions and QoL (r = 0.17; p < 0.05).**Conclusions.** T2DM has a negative impact on all QoL domains assessed by the ADDQoL questionnaire. Implementation of diabetes self-management education leads to statistically significant improvements in QoL and should be an integral part of the management of such patients.**Keywords:** type 2 diabetes mellitus; self-management education; quality of life; glycemic control.**В. І. Величко, Д. О. Лагода, Є. О. Тулянцева, Г. О. Данильчук****ВПЛИВ НАВЧАННЯ ОСНОВ САМОКОНТРОЛЮ НА ЯКІСТЬ ЖИТТЯ ПАЦІЄНТІВ ІЗ ЦУКРОВИМ
ДІАБЕТОМ 2-ГО ТИПУ***Одеський національний медичний університет, Одеса, Україна*

У статті досліджено вплив навчання основам самоконтролю діабету на якість життя (ЯЖ) пацієнтів із цукровим діабетом (ЦД) 2-го типу. У дослідження включено 140 пацієнтів. З урахуванням наявності когнітивних порушень (КП) і участі в навчанні сформовано чотири підгрупи (Іа, Іб, ІІа, ІІб). Показник ЯЖ оцінювали за допомогою опитувальника «Аудит діабет-залежної ЯЖ» (Audit of Diabetes-Dependent Quality of Life, ADDQoL). Через 12 місяців у підгрупах (Іа, ІІа), які не проходили навчання, спостерігалося погіршення середньозваженого показника впливу діабету (AWI) (Іа: до $-2,35 \pm 0,43$; p < 0,05; ІІа: до $-1,88 \pm 1,90$; p > 0,05), тоді як у пацієнтів у підгрупах (Іб, ІІб), які проходили навчання, відзначалося значуще покращення AWI (Іб: до $-1,04 \pm 0,31$; ІІб: до $-0,79 \pm 1,40$; p < 0,05). Встановлено негативний кореляційний зв'язок між рівнем глікованого гемоглобіну (HbA1c) (r = -0,28; p < 0,05) та індексом маси тіла (IMT) (r = -0,25; p < 0,05) і показниками ЯЖ, а також прямий – між когнітивними функціями та ЯЖ (r = 0,17; p < 0,05). Таким чином, впровадження навчання основ самоконтролю діабету забезпечує статистично значуще покращення показників ЯЖ і має бути невід'ємною частиною ведення таких пацієнтів.

Ключові слова: цукровий діабет 2-го типу, навчання самоконтролю, якість життя, глікемічний контроль.**Introduction**

Among chronic non-communicable diseases, type 2 diabetes mellitus (T2DM) occupies one of the leading positions, with its prevalence continuously increasing worldwide, including in Ukraine [1].

The course of T2DM is accompanied by persistent metabolic disorders, a high risk of macrovascular and microvascular complications, and a significant impact on all aspects of patients' lives [2]. The results of numerous clinical studies demonstrate that achieving glycemic control is essential for preventing the development of diabetes complications [3; 4]. At the same time, the modern management strategy for patients with T2DM should take into account not only glycemic control but also ensuring an adequate quality

of life (QoL) as one of the key indicators of treatment effectiveness [5].

According to the World Health Organization, QoL is an individual's perception of their position in life in the context of the culture and value system in which they live, and in relation to their goals, expectations, standards, and concerns. The main components of QoL include physical, emotional well-being, independence, social relationships, environmental conditions, and spiritual aspects. Some authors also include the sense of satisfaction and personal happiness within the QoL concept structure. C. Bradley, one of the recognized experts in QoL research, notes in a brief annotation to the ADDQoL questionnaire for patients that QoL is "how good or bad your life is, according to your own feelings" [6].

QoL questionnaires are classified into general ones, i.e., universal instruments applicable to various diseases, and disease-specific ones developed for particular nosologies or medical fields [7].

In patients with T2DM, QoL deterioration occurs not only due to the manifestations and complications of the disease itself, but also due to the need for constant self-monitoring, adherence to a healthy diet, regular medication intake, lifestyle restrictions, as well as the development of chronic anxiety, depression, and reduced self-esteem [8].

Symptoms of hypo- or hyperglycemia and the presence of late complications of T2DM may lead to emotional exhaustion, anxiety-depressive disorders, and, consequently, reduced treatment adherence [9].

In turn, non-adherence to therapeutic recommendations leads to worsening glycemic control, an increased risk of complications, hospitalizations, and further deterioration in QoL. Thus, there is a bidirectional relationship between diabetes and QoL: diabetes reduces QoL, while decreased QoL complicates disease management and impairs self-control [9].

Therefore, QoL issues are fundamentally important in managing patients with T2DM. They play a key role in shaping treatment adherence, the ability to control the disease course, and maintaining sustained physical and psychosocial well-being.

The aim of the study was to evaluate the impact of education in diabetes self-management principles on the quality of life of patients with type 2 diabetes mellitus using the ADDQoL questionnaire.

Materials and Methods

The study was conducted at the Department of Family Medicine, General Practice, and Outpatient Therapy of the Odesa National Medical University. All patients provided informed consent to participate in the study, which was conducted in accordance with the principles of the Ethical Code of the World Medical Association (Declaration of Helsinki). The Bioethics Committee of the Odesa National Medical University approved the study (Protocol No. 29 dated 12.04.2021).

During the study, the results of psychometric testing, clinical and laboratory examinations, and anamnesis data of 140 patients with a primary diagnosis of T2DM and obesity were analyzed.

Participants were assigned to study groups according to cognitive status and participation in a self-management education program. Group I (n = 81) included patients with mild to moderate cognitive impairment. Group II (n = 59) comprised patients without cognitive impairment (CI). Within each group, subgroups were formed according to participation in diabetes self-management education. Subgroup Ia (n = 40) included patients with CI who received standard treatment only, whereas Subgroup Ib (n = 41) consisted of patients with CI who, in addition to standard therapy, completed self-management education. Subgroup IIa (n = 29) comprised patients without CI who received standard treatment without educational intervention, and Subgroup IIb (n = 30) included patients who, alongside standard therapy, participated in the diabetes self-management education program.

The study was conducted according to inclusion and exclusion criteria. Inclusion criteria: informed consent; a prior endocrinologist-verified diagnosis of T2DM not requiring insulin therapy; HbA1c level up to 9.5%; age 25–60 years; availability of a glucometer. Exclusion criteria: refusal to participate; acute or exacerbated chronic comorbidities; T2DM requiring insulin therapy; type 1 diabetes and other diabetes types; mental disorders, dementia; hormonal disorders contributing to weight gain; intake of medications affecting weight gain; pregnancy.

All patients underwent a questionnaire survey and a general clinical examination. To assess QoL, the standardized ADDQoL questionnaire was used. Permission to use the Ukrainian-language version of the questionnaire was obtained from C. Bradley, and License Agreement No. SV 1247 was signed.

The ADDQoL questionnaire was developed by C. Bradley in 1999 [6]. It consists of 2 general and 19 specific domains that cover key aspects of life potentially affected by diabetes. Scores in each domain may range from -9 (the most negative impact) to +9 (the most positive impact); 0 indicates no impact.

The ADDQoL questionnaire includes the following life domains: "leisure," "work," "journeys," "holidays," "physical," "family life," "friendship and social life," "personal relationship," "sex life," "physical appearance," "self-confidence," "motivation," "reactions of other people," "feelings about the future," "financial situation," "living conditions," "depend on others," "freedom to eat," and "freedom to drink" [10].

Statistical analysis was performed using licensed software Microsoft Excel 2019 and Statistica 23.0.0.0. Quantitative variables were described using the mean (M) and standard deviation ($\pm SD$). Changes in indicators (Δ) were presented as mean values and standard error of the mean ($\pm SE$). The significance of differences in categorical variables was assessed using Pearson's χ^2 test, and differences in mean values were evaluated using Student's t-test. A p-value < 0.05 was considered statistically significant. Correlations were assessed using Pearson's correlation coefficient (r).

Research results and their discussion

The study included 140 patients with type T2DM, with a mean age of 53.99 ± 4.14 years. The mean duration of

the disease at enrollment was 8.08 ± 6.05 years. Women accounted for 61.43% of the study population. The mean HbA1c level was $7.61 \pm 1.06\%$.

Approximately half of the participants had higher education (45.70%). At the time of examination, 66 patients (47.14%) had permanent or temporary employment.

Most patients included in the study rated their diabetes-unrelated QoL (the first general question of the ADDQoL questionnaire) as "good" or "neutral" ("neither good nor bad") (Table 1). In Subgroup Ia, the mean ADDQoL score at baseline was 0.28 ± 0.91 and -0.06 ± 1.39 – after 12 months ($p > 0.05$); in Subgroup Ib – 0.51 ± 0.95 and 0.92 ± 1.09 , respectively ($p > 0.05$); in Subgroup IIa – 0.21 ± 0.98 at baseline and -0.20 ± 1.19 – after 12 months ($p > 0.05$); in Subgroup IIb – 0.20 ± 1.06 and 1.07 ± 1.03 , respectively ($p < 0.05$).

When analyzing the responses of patients to the second general question of the ADDQoL questionnaire, it was found that the presence of diabetes significantly worsened their QoL. Before the intervention, most respondents

believed that their life would be "a little better" (Ia – 47.50%; Ib – 53.66%; IIa – 55.17%; IIb – 60.00%) or "much better" without diabetes (Ia – 45.00%; Ib – 39.02%; IIa – 31.03%; IIb – 26.67%) (Table 2). At baseline, the mean score in Subgroup Ia was -1.38 ± 0.63 , and after 12 months of follow-up -1.19 ± 0.82 ($p > 0.05$). In Subgroup Ib, the changes were statistically significant: -1.32 ± 0.61 at baseline and -1.15 ± 0.59 after 12 months of diabetes self-management education ($p < 0.05$). In Subgroup IIa, the scores were -1.17 ± 0.66 and -1.28 ± 0.61 , respectively ($p > 0.05$), and in Subgroup IIb -1.13 ± 0.63 and -1.10 ± 0.77 ($p > 0.05$).

Thus, in patients who had diabetes self-management education, an improvement in diabetes-related QoL was observed after 12 months.

For a more detailed assessment, the Average Weighted Impact (AWI) score of diabetes on QoL was calculated using the ADDQoL questionnaire. The findings confirmed the negative impact of T2DM on QoL in all patients. At baseline, the mean AWI in Subgroup Ia was -1.72 ± 0.41 ,

Table 1
Dynamics of responses of patients with type 2 diabetes mellitus to the first general question of the ADDQoL questionnaire over a one-year period (%)

Overall, my quality of life now is:	Ia		Ib		IIa		IIb	
	Before	After 12 months						
excellent (+3 points)	0	0	0	0	0	0	0	0
very good (+2)	5.00	13.89	14.63	33.33*	10.34	4.00	13.33	41.38*
good (+1)	42.50	30.56	39.02	41.03	27.59	28.00	26.67	37.93
neither good nor bad (0)	27.50	11.11	29.27	15.38	34.48	32.00	26.67	6.90
bad (-1)	25.00	25.00	17.07	5.13*	27.59	16.00	33.33	13.79
very bad (-2)	0	19.44**	0	5.13	0	20.00*	0	0
extremely bad (-3)	0	0	0	0	0	0	0	0

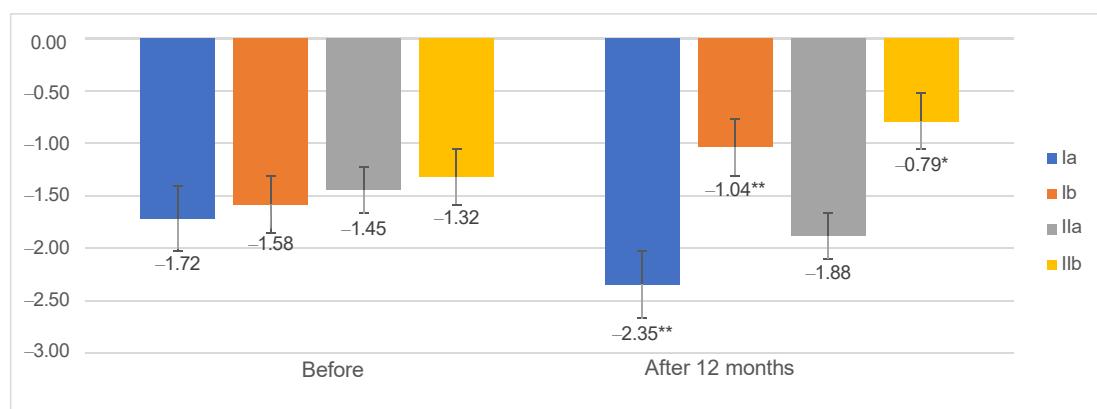
Note: * – $p < 0.05$; ** – $p < 0.01$ – between indicators before and after 12 months within each subgroup.

Table 2
Dynamics of responses from patients with type 2 diabetes to the second general question of the ADDQoL questionnaire over a one-year period (%)

If I did not have diabetes, my quality of life would be:	Ia		Ib		IIa		IIb	
	Before	After 12 months						
very much better (-3 points)	0	0	0	0	0	0	0	0
much better (-2)	45.00	44.44	39.02	25.64	31.03	36.00	26.67	34.48
a little better (-1)	47.50	30.56	53.66	64.10	55.17	56.00	60.00	41.38
the same (0)	7.50	25.00*	7.32	10.26	13.79	8.00	13.33	24.14
worse (1)	0	0	0	0	0	0	0	0

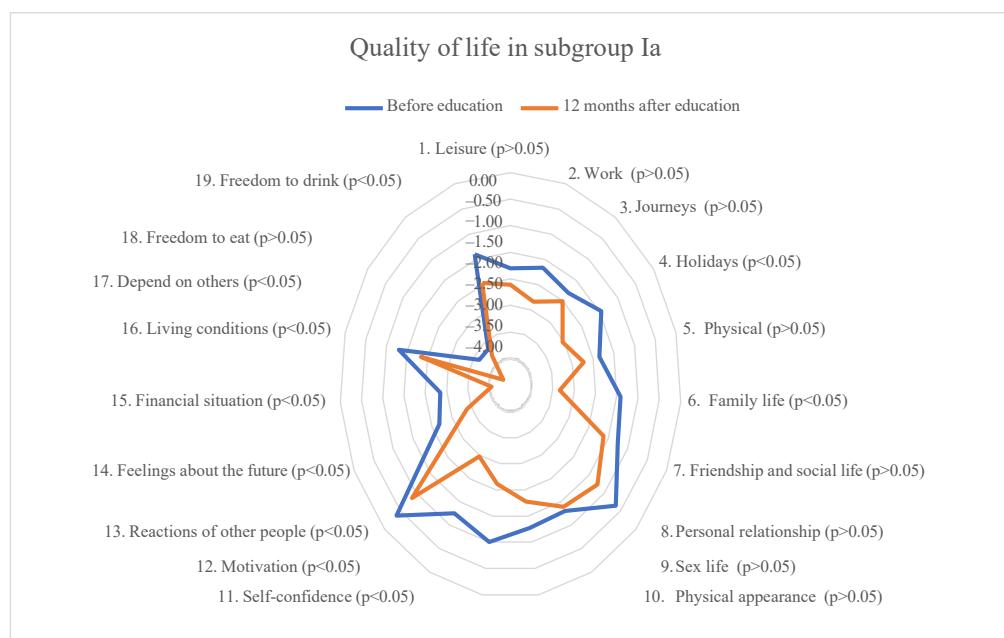
Note: * – $p < 0.05$ – between indicators before and after 12 months within each subgroup.

in Subgroup Ib -1.58 ± 0.40 , in Subgroup IIa -1.45 ± 1.61 , and in Subgroup IIb -1.32 ± 1.49 ($p > 0.05$) (Fig. 1).


After 12 months of observation, the AWI in Subgroup Ia significantly decreased from -1.72 ± 0.41 to -2.35 ± 0.43 ($p < 0.01$), indicating a deterioration in QoL. In contrast, in Subgroup Ib a statistically significant increase in AWI was registered after 12 months of diabetes self-management education – from -1.58 ± 0.40 to -1.04 ± 0.31 ($p < 0.01$). In Subgroup IIa, AWI remained almost unchanged and stayed low throughout the entire follow-up – from -1.45 ± 1.61 to -1.88 ± 1.90 ($p > 0.05$). In Subgroup IIb, a statistically significant improvement was observed, with AWI increasing from -1.32 ± 1.49 to -0.79 ± 1.40 after 12 months of diabetes self-management education ($p < 0.05$).

Figures 2 and 3 present the analysis of changes in individual QoL domains in patients of Subgroups Ia and IIa, who received standard treatment without diabetes self-

management education for one year. A tendency toward deterioration was observed in most QoL domains assessed by the ADDQoL scale.


Over 12 months, Subgroup Ia demonstrated a significant decline in 10 out of 19 domains ($p < 0.05$), whereas in Subgroup IIa statistically significant changes were observed only in several domains, although most parameters showed negative trends.

In Subgroup Ia, the most pronounced deterioration was detected in domains related to emotional and psychological well-being, namely: “self-confidence” (from -1.00 ± 1.50 to -2.11 ± 1.74 ; $p < 0.05$), “motivation” (from -1.25 ± 0.98 to -2.47 ± 2.10 ; $p < 0.05$), “reactions of other people” (from -0.38 ± 0.84 to -0.86 ± 1.40 ; $p < 0.05$), as well as “feelings about the future” (from -2.18 ± 1.85 to -2.89 ± 2.38 ; $p < 0.05$) and “depend on others” (from -3.13 ± 2.08 to -3.81 ± 1.95 ; $p < 0.05$).

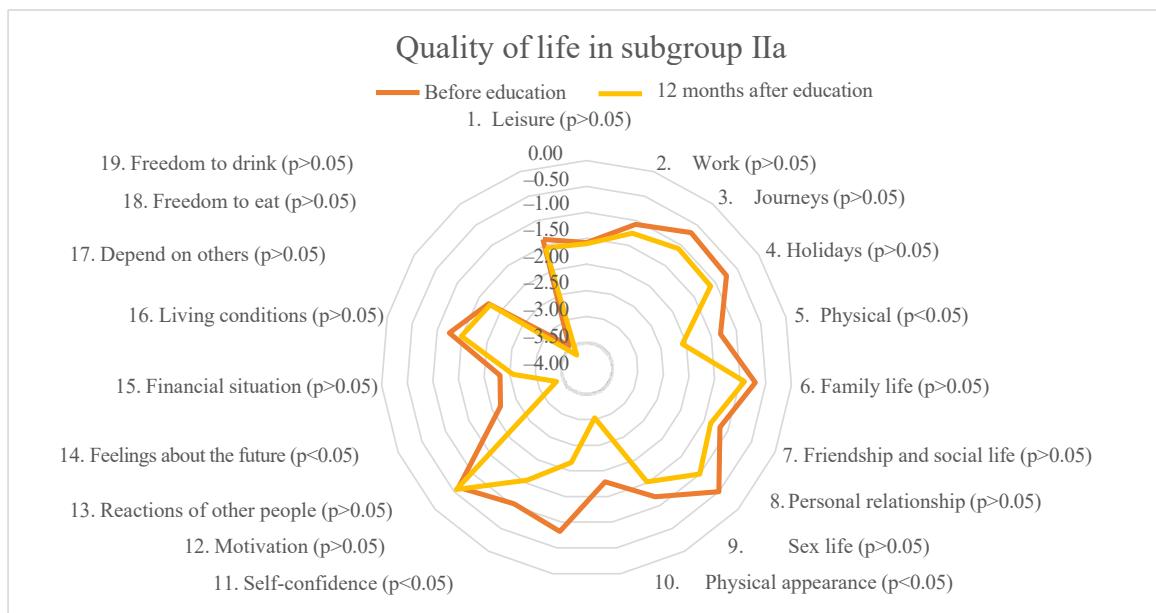
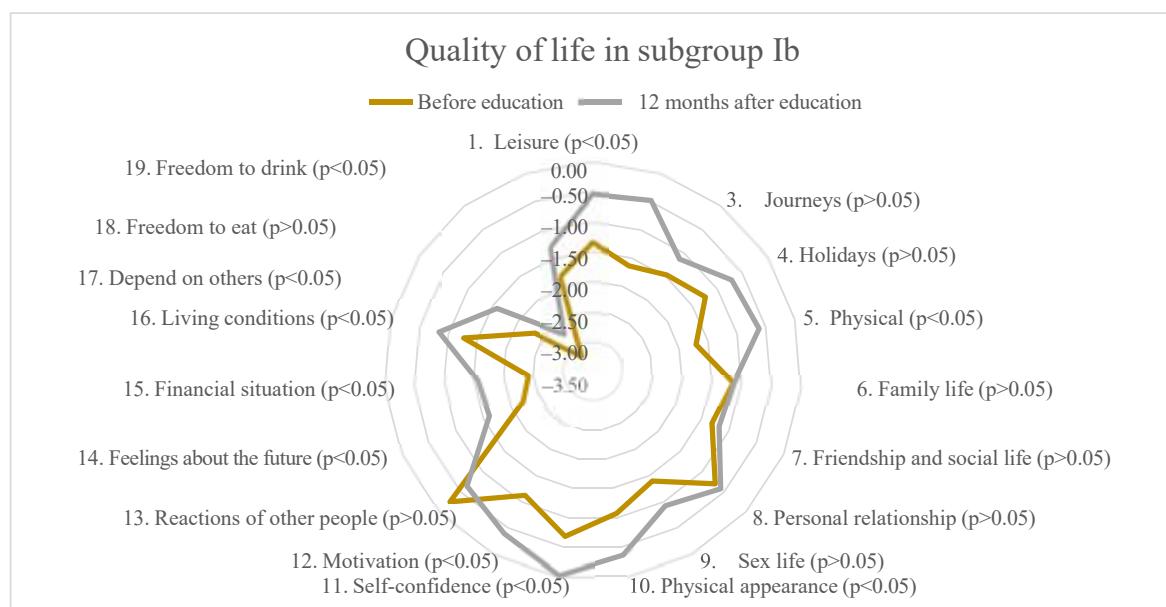


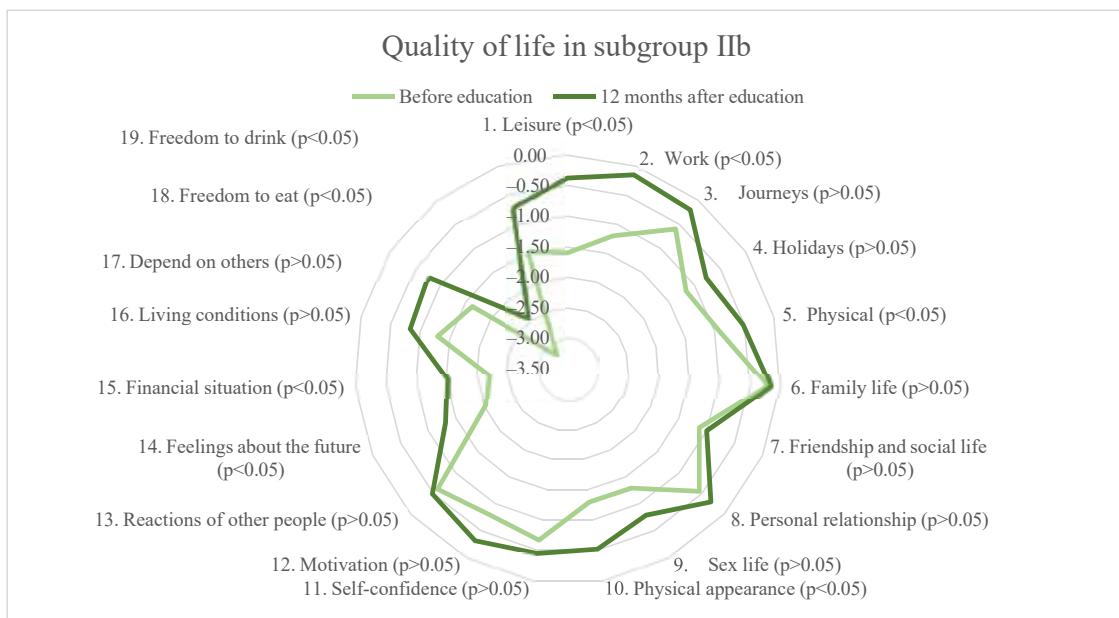
Fig. 1. Dynamics of the Average Weighted Impact of diabetes on patients' quality of life according to the ADDQoL questionnaire at baseline and after 12 months of follow-up

Note: * – $p < 0.05$; ** – $p < 0.01$ – between baseline and 12-month measurements within each subgroup.

Fig. 2. Dynamics of the Average Weighted Impact scores for individual quality-of-life domains assessed using the ADDQoL questionnaire in patients of Subgroup Ia at baseline and after 12 months of follow-up


Fig. 3. Dynamics of the Average Weighted Impact scores for individual quality-of-life domains assessed using the ADDQoL questionnaire in patients of Subgroup IIa at baseline and after 12 months of follow-up

In Subgroup IIa, which also did not undergo diabetes self-management education, changes were less pronounced, specifically in the domains of "physical" (from -1.31 ± 1.44 to -2.08 ± 1.78 ; $p < 0.05$), "physical appearance" (from -1.79 ± 2.16 to -3.04 ± 2.24 ; $p = 0.05$), "self-confidence" (from -0.83 ± 1.56 to -2.16 ± 2.15 ; $p < 0.05$), and "feelings about the future" (from -2.17 ± 1.63 to -3.36 ± 1.87 ; $p < 0.05$).


In patients of Subgroups Ib and IIb, who completed diabetes self-management education, a pronounced improvement in QoL according to the ADDQoL scale was observed after 12 months. Figures 4 and 5 show that the

most prominent positive changes occurred in the domains reflecting physical and psychological well-being. In both subgroups, significant improvements were recorded in the "physical" domain (Ib: from -1.71 ± 1.65 to -0.62 ± 1.73 ; $p < 0.05$; IIb: from -0.93 ± 1.36 to -0.52 ± 0.99 ; $p < 0.05$), "physical appearance" (Ib: from -1.07 ± 1.23 to -0.36 ± 0.90 ; $p < 0.05$; IIb: from -1.30 ± 1.97 to -0.52 ± 0.87 ; $p < 0.05$), as well as in "self-confidence" and "motivation" (both $p < 0.05$).

Significant improvement was also observed in socio-domestic domains, including "leisure," "work," "living conditions," "financial situation," and "feelings about the

Fig. 4. Dynamics of the Average Weighted Impact scores for individual quality-of-life domains assessed using the ADDQoL questionnaire in patients of Subgroup Ib at baseline and after 12 months of diabetes self-management education

Fig. 5. Dynamics of the Average Weighted Impact scores for individual quality-of-life domains assessed using the ADDQoL questionnaire in patients of Subgroup IIb at baseline and after 12 months of diabetes self-management education

future." In Subgroup IIb, additional positive changes were noted in the domain of "freedom to eat" and "freedom to drink" ($p < 0.05$). At the same time, correlation analysis demonstrated an inverse relationship between HbA1c levels and patients' QoL: reductions in HbA1c were associated with improvements in ADDQoL scores. The strongest correlations were identified for the domains "motivation," "physical," and "self-confidence" ($r = -0.28$; $p < 0.05$). A negative correlation was also found between BMI and QoL scores on the ADDQoL questionnaire. The most pronounced associations were observed for the domains related to "physical" and "physical appearance" ($r = -0.25$; $p < 0.05$). In addition, higher cognitive function scores correlated with better QoL ratings ($r = 0.17$; $p < 0.05$).

It is important to note that the ADDQoL questionnaire includes five domains that patients may choose not to rate. If a response is not provided, the ADDQoL score is calculated without including these domains. In our study, patients expressed the least interest in the domains "work" ("not applicable" responses: 47.14%), "personal relationship" ("not applicable" responses: 39.29%), "sex life" ("not applicable" responses: 29.29%), "holidays" ("not applicable" responses: 22.14%), and "family life" ("not applicable" responses: 10.71%).

The results obtained in our study indicate that patients with type 2 DM assess their QoL related to the presence of a chronic disease as low, whereas their overall QoL not related to diabetes was good or neutral. Our data also confirm that type 2 DM exerts an adverse impact on all 19 QoL domains assessed using the ADDQoL questionnaire.

The impact of diabetes on AWI differed across individual domains. The most unfavorable impact was observed in such aspects of life as "freedom to eat," "depend on others," and "financial situation" in patients of Subgroups Ia and Ib; and "freedom to eat," "financial situation," and

"feelings about the future" in patients of Subgroups IIa and IIb. The least pronounced impact of type 2 DM was found for the domains "reactions of other people," "personal relationship," and "self-confidence" in Subgroups Ia and Ib, and "personal relationship," "reactions of other people," and "family life" in Subgroups IIa and IIb.

The results of this study are consistent with the literature data [11]. Thus, in the study by S. Krzemińska et al. (2020), which conducted a comparative analysis of the impact of type 2 DM on QoL in patients in Poland, the Czech Republic, and Slovakia, diabetes was shown to negatively affect all 19 ADDQoL domains. The most unfavorable impact was observed for the domains "freedom to eat," "freedom to drink," and "feelings about the future" in Polish and Czech patients, as well as "freedom to eat," "feelings about the future," and "freedom to drink" in Slovak patients. The least affected domains were "living conditions," "reactions of other people," and "leisure" in Polish and Czech patients, and "living conditions," "reactions of other people," and "friendships and social life" in Slovak patients.

In the study by P. Kumar et al. (2018), it was demonstrated that higher HbA1c levels in patients with type 2 DM were associated with better QoL [12].

Our results align with current scientific evidence confirming the importance of an individualized approach to glycemic monitoring in patients with type 2 DM. In particular, Kiforenko et al. (2021) proposed an algorithm for predicting the glycemic profile based on mathematical modeling, which optimizes the frequency of measurements and increases the accuracy of assessing glycemic variability. This approach allows more precise disease control and significantly improves patients' well-being and QoL [13].

In turn, Mankovsky et al. (2021) described a clinical case of continuous glucose monitoring (CGM) use in a patient with ischemic heart disease and type 2 DM,

which demonstrated the ability of this technology to detect episodes of hypoglycemia and hyperglycemia not identifiable with traditional self-monitoring. The authors emphasize that the introduction of CGM improves the effectiveness of antihyperglycemic therapy, reduces the risk of complications, and enhances both the physical and psycho-emotional components of QoL [14].

These findings are consistent with our results, which confirm the importance of systematic glycemic control in improving patients' QoL.

Several studies [15–18] have demonstrated that the implementation of educational programs for patients with type 2 DM not only increases their awareness of the disease and self-management skills but also leads to significant improvements in QoL indicators. Our results align with these findings: in the subgroups of patients who underwent diabetes self-management education, QoL improved across all domains.

Conclusions

In our study, it was established that type 2 DM has a negative impact on all aspects of QoL, as confirmed by the ADDQoL questionnaire. The most pronounced negative impact at baseline was recorded in the domains "freedom to eat" (-3.15 ± 3.08 ; -3.20 ± 3.07 ; $p > 0.05$),

"depend on others" (-3.13 ± 2.08 ; -2.34 ± 2.10 ; $p > 0.05$), and "financial situation" (-2.35 ± 2.07 ; -2.41 ± 2.06 ; $p > 0.05$) in Subgroups Ia and Ib, respectively; and "freedom to eat" (-3.45 ± 2.98 ; -3.20 ± 2.71 ; $p > 0.05$), "financial situation" (-2.31 ± 1.73 ; -2.20 ± 1.56 ; $p > 0.05$), and "feelings about the future" (-2.17 ± 1.63 ; -2.03 ± 1.71 ; $p > 0.05$) in Subgroups IIa and IIb, respectively.

It was found that diabetes self-management education significantly improves patients' QoL. In Subgroup Ib, AWI increased from -1.58 ± 0.40 to -1.04 ± 0.31 ($p < 0.05$). In Subgroup IIb, AWI improved from -1.32 ± 1.49 to -0.79 ± 1.40 ($p < 0.05$). In patients who did not receive diabetes self-management education (Subgroups Ia and IIa), QoL deteriorated over the year: in Subgroup Ia, AWI decreased from -1.72 ± 0.41 to -2.35 ± 0.43 ($p < 0.05$). In Subgroup IIa, AWI changed from -1.45 ± 1.61 to -1.88 ± 1.90 ($p > 0.05$).

An inverse correlation was identified between HbA1c level ($r = -0.28$; $p < 0.05$) and BMI ($r = -0.25$; $p < 0.05$) and QoL indicators, as well as a direct correlation between cognitive function and QoL ($r = 0.17$; $p < 0.05$).

Thus, the results of the study show that diabetes self-management education has a significant impact on improving QoL in patients with type 2 DM.

BIBLIOGRAPHY

1. International Diabetes Federation. IDF Diabetes Atlas. 11th ed. Brussels: International Diabetes Federation, 2025. <https://diabetesatlas.org>.
2. Arnold SV, Khunti K, Tang F, et al. Discover investigators. Impact of micro- and macrovascular complications of type 2 diabetes on quality of life: Insights from the DISCOVER prospective cohort study. *Endocrinol Diabetes Metab*. 2022 Mar; 5(2): e00321. DOI: 10.1002/edm2.321.
3. Almasri AI, Malallah MAY, Jamal NS, et al. The critical role of early glycemic control in preventing long-term microvascular and macrovascular complications in diabetes. *J Popul Ther Clin Pharmacol*. 2025; 32(2): 339–347. DOI: 10.53555/v2x2b216.
4. Poonoosamy J, Lopes P, Huret P, et al. Impact of Intensive Glycemic Treatment on Diabetes Complications-A Systematic Review. *Pharmaceutics*. 2023 Jun 22;15(7):1791. DOI: 10.3390/pharmaceutics15071791. PMID: 37513978; PMCID: PMC10383300.
5. American Diabetes Association Professional Practice Committee. Summary of revisions: standards of care in diabetes – 2025. *Diabetes Care*. 2025 Jan 1; 48(Suppl 1): S6–S13. DOI: 10.2337/dc25-SREV.
6. Bradley C, Todd C, Gorton T, Symonds E, Martin A, Plowright R. The development of an individualized questionnaire measure of perceived impact of diabetes on quality of life: the ADDQoL. *Qual Life Res*. 1999; 8(1–2): 79–91. DOI: 10.1023/a:1026485130100. PMID: 10457741.
7. Alzahrani O, Fletcher JP, Hitos K. Quality of life and mental health measurements among patients with type 2 diabetes mellitus: a systematic review. *Health Qual Life Outcomes*. 2023; 21: 27. DOI: 10.1186/s12955-023-02111-3.
8. Patra S, Patro BK, Padhy SK, Mantri J. Relationship of mindfulness with depression, self-management, and quality of life in type 2 diabetes mellitus: mindfulness is a predictor of quality of life. *Indian J Soc Psychiatry*. 2023 Jan-Mar; 39(1): 70–76. DOI: 10.4103/ijsp.ijsp_436_20.
9. Mangoulia P, Milionis C, Vlachou E, Ilias I. The interrelationship between diabetes mellitus and emotional well-being: current concepts and future prospects. *Healthcare (Basel)*. 2024 Jul 22; 12(14): 1457. DOI: 10.3390/healthcare12141457.
10. Bak E, Marcisz C, Nowak-Kapusta Z, Dobrzyn-Matusiak D, Marcisz E, Krzemińska S. Psychometric properties of the Audit of Diabetes-Dependent Quality of Life (ADDQoL) in a population-based sample of Polish adults with type 1 and 2 diabetes. *Health Qual Life Outcomes*. 2018; 16(1): 53. DOI: 10.1186/s12955-018-0878-y.
11. Krzemińska S, Bak E, Šáteková L, Polanská A, Hašová K, Laurinc M. Comparison of diabetes-dependent quality of life (ADDQoL) in patients with T2DM in Poland, the Czech Republic, and Slovakia. *Diabetes Metab Syndr Obes*. 2020 Oct 19; 13: 3773–3786. DOI: 10.2147/DMSO.S273339.
12. PrasannaKumar HR, Mahesh MG, Menon VB, Srinath KM, Shashidhara KC, Ashok P. Patient self-reported quality of life assessment in type 2 diabetes mellitus: a pilot study. *Niger J Clin Pract*. 2018 Mar; 21(3): 343–349. DOI: 10.4103/njcp.njcp_433_16.
13. Kiforenko SI, Vasyliev IYu, Lavrenyuk MV, Hontar TM. Algorithm for predicting the glicemic profil in diabetes under regular measurements. *Innovative Biosystems and Bioengineering*. 2021; 5(1): 17–26. DOI: <https://doi.org/10.20535/ibb.2021.5.1.218259>.

14. Mankovsky GB, Dzhun YY, Marushko YY, Saienko YA, Rudenko NM, Mankovsky BM. Use of Continuous Glucose Monitoring in Patient with Coronary Artery Disease and Type 2 Diabetes Mellitus: Case Report. *Ukrainskyi Zhurnal Sertsevo Sudynnoi Khirurhii*. 2021; 30(1): 83–88. DOI: [https://doi.org/10.30702/ujcvs/22.30\(01\)/MD011-8388](https://doi.org/10.30702/ujcvs/22.30(01)/MD011-8388).
15. Kiçaj E, Saliaj A, Çerçizaj R, Prifti V, Qirko S, Rogozea L. Navigating diabetes: enhancing self-management through education among diabetic people at the early stages of the disease – a systematic review. *Int J Environ Res Public Health*. 2024; 21(5): 522. DOI: 10.3390/ijerph21050522.
16. Hernández-Jiménez S, García-Ulloa AC, Bello-Chavolla OY, Aguilar-Salinas CA, Kershenobich-Stalnikowitz D; CAIPaDi Study Group. Long-term effectiveness of a type 2 diabetes comprehensive care program: the CAIPaDi model. *Diabetes Res Clin Pract*. 2019 May; 151: 128–137. DOI: 10.1016/j.diabres.2019.04.009. PMID: 30954513.
17. Colungo C, Liroz M, Jansà M, et al. Health care and therapeutic education program for newly diagnosed type 2 diabetes: a new approach in primary care. *Endocrinol Diabetes Nutr (Engl Ed)*. 2018 Nov; 65(9): 486–499. DOI: 10.1016/j.endinu.2018.06.011. PMID: 30145266.
18. Wei L, Wang J, Li Z, Zhang Y, Gao Y. Design and implementation of an Omaha system-based integrated nursing management model for patients with newly-diagnosed diabetes. *Prim Care Diabetes*. 2019 Apr; 13(2): 142–149. DOI: 10.1016/j.pcd.2018.11.001.

Надійшла до редакція 13.08.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування dr.elizatuliantseva@gmail.com

POST-THERAPEUTIC ANTIOXIDANTS-ASSOCIATED CHANGES IN THE CONCENTRATION OF INFLAMMATION AND CYTOPROTECTION MARKERS IN THE BLOOD OF PATIENTS WITH CHRONIC GENERALISED PERIODONTITIS

Zaporizhzhia State Medical and Pharmaceutical University, Zaporizhzhia, Ukraine

UDC 616.314.18-002.4+616.311.2.-07-08

V. I. Salnykov

POSTTHERAPEUTIC ANTIOXIDANT-ASSOCIATED CHANGES IN THE CONCENTRATION OF MARKERS OF INFLAMMATION AND CYTOPROTECTION IN THE BLOOD OF PATIENTS WITH CHRONIC GENERALISED PERIODONTITIS

Zaporizhzhia State Medical and Pharmaceutical University, Zaporizhzhia, Ukraine

Despite the successes achieved in the treatment of chronic periodontitis, the problem remains relevant and requires new approaches to drug therapy. In connection with the understanding of the role of oxidative stress in the pathogenesis of periodontitis, the additional inclusion of antioxidants in complex therapy is promising.

The aim of the work: laboratory and biochemical assessment of the effectiveness of complex therapy for chronic generalised periodontitis with the additional inclusion of the antioxidant drug with sodium selenite pentahydrate.

Materials and methods: 60 patients with chronic generalised moderate periodontitis (aged 40 to 65, including 35 women and 25 men) were divided into control and main groups. Patients in the main group were additionally included in complex therapy with the antioxidant sodium selenite pentahydrate.

Results: During the first 10 days (5 times), it was administered by intraoral bivalve transgingival electrophoresis (50 mcg/day), and then at the same dosage "per os" for 20 days. Before the start and after 30 days of treatment, markers of inflammation (IL-1 β , TNF- α) and endogenous cytoprotection (HIF-1 α and HSP70) were determined in the blood of patients by enzyme-linked immunosorbent assay. Statistical analysis was performed using the software package "STATISTICA® for Windows 6.0" (StatSoft Inc., No. AXXR712D833214FAN5), as well as "SPSS 16.0" and "Microsoft Excel 2003". The results obtained demonstrate the promising potential of including sodium selenite pentahydrate in the complex therapy of chronic generalised periodontitis, as an important component of its antioxidant composition.

Keywords: chronic generalised periodontitis, complex therapy, antioxidants, endogenous cytoprotection, inflammation.

УДК 616.314.18-002.4+616.311.2.-07-08

В. І. Сальников

ПОСТТЕРАПЕВТИЧНІ АНТИОКСИДАНТ-АСОЦІЙОВАНІ ЗМІНИ КОНЦЕНТРАЦІЇ МАРКЕРІВ ЗАПАЛЕННЯ ТА ЦИТОПРОТЕКЦІЇ У КРОВІ ПАЦІЄНТІВ ІЗ ХРОНІЧНИМ ГЕНЕРАЛІЗОВАНИМ ПАРОДОНТИТОМ

Запорізький державний медико-фармацевтичний університет, Запоріжжя, Україна

Незважаючи на досягнуті успіхи в лікуванні хронічного пародонтиту, проблема залишається актуальною і потребує нових підходів до медикаментозної терапії. Розуміння ролі оксидативного стресу в патогенезі пародонтиту актуалізує додавання до комплексної терапії антиоксидантів. Метою дослідження було окреслено лабораторно-біохімічну оцінку ефективності комплексної терапії хронічного генералізованого пародонтиту за додавання антиоксиданті - препарату з діючою речовиною «натрію селеніту пентагідрат». У рамках дослідження обстежено 60 пацієнтів із цільовою патологією середнього ступеня тяжкості, які були розподілені на групи. Пацієнтам основної групи додатково здійснювалося додавання до комплексної терапії натрію селеніту пентагідрату у формі вищезазначеного препарату шляхом інтраорального трансгінгівального електрофорезу, потім у тому ж дозуванні per os. Діагностичними критеріями були рівні молекулярних маркерів IL-1 β , TNF- α , HIF-1 α і HSP70.

Ключові слова: хронічний генералізований пародонтит, комплексна терапія, антиоксиданти, ендогенна цитопротекція, запалення.

Introduction

Periodontal diseases are considered a health problem due to their high prevalence worldwide. Despite the success achieved in understanding the pathogenesis and treatment of inflammatory periodontal diseases in recent decades, the problem remains relevant. Currently, the treatment of periodontal diseases is not always successful due to a number of factors, including patients' failure to fol-

low targeted medical instructions and recommendations, incomplete understanding of some subtle, highly specific links in the molecular mechanisms of inflammation, oxidative and nitrosative stress, and endogenous cytoprotection, which lead to the irrational selection of medications when planning and implementing treatment for periodontal patients [1].

Periodontal studies have identified specific microbial pathogens, including *Aggregatibacter actinomycetemcomitans*, *Porphyromonas gingivalis*, *Tannerella forsythia*, *Treponema denticola*, which, in combination with moderately virulent organisms, form highly organised complex communities in the form of biofilms, initially present at

the supragingival level and, in later stages of the disease, at the subgingival level [2]. The presence of periodontal pathogenic biofilm stimulates the activation of signalling pathways associated with inflammation in gingival fibroblasts and the production of inflammatory cytokines (IL-1 β , TNF- α , IL-6) and reactive oxygen species (ROS) [3]. Periodontal inflammation activates several pathways of ROS formation at once: activation of NADPH oxidase in neutrophils, activation of iNOS and increased NO production, mitochondrial dysfunction, synthesis of pro-inflammatory prostaglandins and thromboxanes due to increased expression of COX-2, the Fenton and Haber-Weiss reactions in the presence of excess divalent iron [4]. Excessive uncontrolled production of ROS against the background of antioxidant deficiency leads to the development of oxidative stress, which, according to current understanding, plays a significant role in the destruction of periodontal tissues and also reduces the effectiveness of anti-inflammatory, reparative and antimicrobial therapy [5]. The above material justifies the widespread use of antioxidants for the treatment of chronic periodontitis in combination with anti-septics, antibiotics, anti-inflammatory and reparative drugs. In modern periodontology, antioxidants of plant origin (resveratrol, quercetin, green tea polyphenols), alpha-tocopherol, and thiotriazoline are widely applied [6]. However, the lack of clear guidelines for the use of antioxidants at different stages of treatment depending on their mechanism of action, their insufficient effectiveness and side effects necessitate both the development of new antioxidant agents and the use of various drugs with antioxidant activity that have not previously been used in periodontology. In particular, because periodontology has been separated into an independent dental specialisation (Ministry of Education and Science of Ukraine ORDER 15.02.2022 No. 293 "On Approval of Amendments to the Reference Book of Qualification Characteristics of Professions of Employees. Issue 78 Health Care"), there are grounds for developing new clinical protocols to ensure effective activity in the professional legal field. Selenium compounds, which have significant antioxidant, anti-inflammatory and cytoprotective activity, are of interest. In experimental studies, we have demonstrated the effectiveness of sodium selenite pentahydrate in experimental chronic periodontitis [7; 8]. The target selenium-containing drug is approved for clinical use and registered in Ukraine (UA/8796/02/01 dated 05.07.2019).

The objective of the study was to conduct laboratory and biochemical assessment of the effectiveness of complex therapy for chronic generalised periodontitis with the additional inclusion of a drug antioxidant with the active ingredient "sodium selenite pentahydrate".

Materials and Methods

In this study, we examined a group of 60 patients (35 women and 25 men) with chronic generalised periodontitis (CGP) of moderate severity.

The patients ranged from 40 to 65 years of age. We also examined 30 relatively healthy patients (with intact periodontium) during a preventive examination by a dentist. The selection, dynamic examination and multimodal treatment of patients diagnosed with CGP and intact periodon-

tium were carried out at the Specialised Dental Centre of the University Clinic of Zaporizhzhia State Medical and Pharmaceutical University, as well as at the clinical base of the Department of Propaedeutic and Surgical Dentistry of ZSMU, the "Chertov Clinic" Dental Implantation Centre (Zaporizhzhia). All patients with CGP were divided into two groups: the main group and the control group, with 30 people in each, depending on the complex drug therapy that was carried out. When including patients in the study, the selection criteria were the presence of chronic generalised periodontitis and voluntary informed consent to examination and complex treatment in the form of a unified document, which was drawn up in advance by the researcher and scientific supervisors. Written informed consent with a personal signature was obtained from all patients who participated in the study. In turn, the exclusion criteria were the presence of acute or exacerbated chronic infectious diseases, autoimmune diseases, acute allergic reactions to therapy components, oncological diseases and ongoing chemotherapy, mental illness, pregnancy, long-term treatment with hormonal drugs, pituitary and thyroid diseases, and individual intolerance to one or more drugs. Participants were informed of their randomisation group assignment during the initial consultation visit.

Patients with CGP in both groups received standardised comprehensive non-drug and drug therapy for 3 months. Non-drug therapy consisted of professional oral hygiene (mechanical treatment of tooth surfaces, polishing, piezoelectric ultrasonic scaling with supragingival and subgingival working tips), Vector system periodontal therapy, closed (for periodontal pockets less than 5 mm deep) and open curettage (for periodontal pockets more than 5 mm deep) with GRACEY curettes manufactured by Hu-Friedy, as well as periodontal splinting of teeth in a physiological orthotopic position to level their pathological mobility (II-III degree) using special elements – glass fibre ligatures on photopolymer fixation. Drug therapy included anti-inflammatory agents applied topically and per os, antiseptic agents applied topically in the form of dental gels or rinses, as well as medicinal preparations in the form of gels or pastes based on propolis and solcoseryl. In addition to the main treatment, patients in the main group received sodium selenite pentahydrate (manufactured by Biosyn Arzneimittel GmbH, Germany) during the first 10 days (5 times) using intraoral transgingival electrophoresis applied to both jaws (50 μ g/day), and then in the same dose internally for 20 days. The ZAPOVIT POTIK-01M device manufactured by BIOMED LLC (Ukraine) was used for electrophoresis. Sodium selenite pentahydrate was diluted in physiological solution with the addition of 0.5M phosphate buffer pH 6.8. Jumper cables and electrodes with disposable carbon conductive pads were used. The current strength was 5 mA for 15 minutes. The drug was administered from the negative pole.

Bioethical aspects of the study

The study was conducted with the consent of patients in accordance with the basic standards of GCP (1996), the European Convention on Human Rights and Biomedicine of 04.04.1997, and in accordance with the principles of the Helsinki Declaration in its latest edition, adopted at the 64th General Assembly of the World Medical Asso-

ciation (WMA) in Fortaleza, Brazil, in October 2013 [9]. This study was approved by the Bioethics Committee of Zaporizhzhia State Medical and Pharmaceutical University (protocol No. 3 of 12.06.2023). Before the start of the study, all patients were explained what the examination and complex therapy entailed. All participants in this study gave their consent to the processing of their personal data.

Blood sampling and preparation of biological material

Before and after 30 days of drug treatment, blood was taken from the elbow vein of patients in all groups and placed in a tube with EDTA anticoagulant. Plasma was separated from the blood by centrifugation in an Eppendorf-5804R centrifuge (Eppendorf, USA) at 1500 rpm for 20 minutes ($T = 22^{\circ}\text{C}$) [10].

Immunoenzymatic analysis

The concentration of HIF-1 α was determined in plasma using the solid-phase enzyme-linked immunosorbent assay (ELISA) method. Human HIF-1 α (Hypoxia Inducible Factor 1 Alpha) ELISA Kit # E – EL – H 6066 (Elabscience, USA) was used in accordance with the instructions provided with the kit. The concentration of heat shock protein HSP-70 was determined by immunoassay in blood plasma using the HSP-70 ELISA kit: Human Heat Shock Protein 70 ELISA Kit # MBS 760396 (MyBioSource, Canada) in accordance with the instructions provided with the kits. The content of IL-1 β was determined in blood plasma using a solid-phase enzyme-linked immunosorbent assay (ELISA) with the Human IL-1 β ELISA Kit # RAB 0273 (Merck KGaA, Darmstadt, Germany) in accordance with the instructions provided with the kits. The TNF- α content was determined in blood plasma using a solid-phase enzyme-linked immunosorbent assay (ELISA) with the Human TNF- α (Tumor Necrosis Factor Alpha) ELISA # E-EL-H0109 test kit (Elabscience, USA) in accordance with the instructions provided with the kits. These analyses were performed on a fully functional tablet immunoassay analyser (SIRIO-S, Seac, Italy).

Statistical analysis

All research data obtained were statistically processed using the STATISTICA® for Windows 6.0 software package (StatSoft Inc., No. AXXR712D833214FANS), as well as SPSS 16.0 and Microsoft Excel 2003. The arithmetic mean (M) and the error of the arithmetic mean (m) were calculated. To identify intergroup and intragroup differences, Student's t-test and Fisher's angular transformation were used. Individual statistical procedures and algorithms were implemented in the form of specially written macros in the corresponding programs. For all types of analysis, differences were considered statistically significant at $p < 0.05$.

Research results and their discussion

A dental examination of relatively healthy patients (intact periodontium) did not reveal any signs of bleeding, tooth mobility, or gum inflammation in this group. An examination of patients in the main and control groups before treatment revealed visual changes in the gums (swollen, cyanotic, pasty: edged, loosely attached to the teeth, disruption of the gum relief), the presence of pathological pockets (up to 5 mm) with serous and serous-purulent exudate, hard and soft dental deposits, pathological tooth mobility, as well as other signs of inflammation. That is, patients in the main and control groups had clinically confirmed chronic generalised periodontitis of moderate severity. Immunoenzymatic analysis of the blood plasma of patients with CGP in the main and control groups before the start of the study revealed a significant increase in inflammation markers and an increase in endogenous cytoprotection markers. Thus, in the blood of patients with CGP in both groups before the start of treatment, an increase in TNF- α was found by 4.48–4.16 times compared to the group of relatively healthy patients ($p < 0.05$), an increase in IL-1 β 5.1–4.9 times compared to the group of relatively healthy patients ($p < 0.05$) (Table 1).

An increase in the blood of patients with CGP in both groups of markers of endogenous cytoprotection HIF-1 α 1.82–1.78 times and HSP70 39.1% and 35.4% compared to the group of relatively healthy patients ($p < 0.05$) was also established (Table 2).

After 30 days of comprehensive non-drug therapy for periodontal disease (removal of dental deposits and plaque, rational hygiene, curettage of periodontal pockets, vector therapy) and drug therapy (use of antiseptic, anti-inflammatory and reparative drugs), a decrease in the symptomatic manifestation of chronic periodontitis was recorded. Thus, in patients of both groups, there was a reduction in hyperemia, bleeding gums, and bad breath disappeared. At the same time, we determined that in the main group, whose patients additionally received an antioxidant in the form of sodium selenite pentahydrate (50 mcg/day, by electrophoresis and internally), the reduction in symptoms of chronic periodontitis was more pronounced. Thus, in patients in the main group, the additional administration of sodium selenite pentahydrate as part of complex therapy led to a significant reduction in the depth of periodontal pockets (to 2 mm, and in the control group to 3–4 mm), cessation of active exudation from them and epithelialisation of their bottom, minimisation of gum bleeding. A more pronounced reduction in tooth mobility was also noted in the main group 30 days after complex therapy against the background of a more pronounced improvement in the clinical picture of the gums than in the control group

Table 1

Inflammation markers in the blood of patients with CGP before and after 30 days of drug treatment

Patient groups	TNF- α , pg/ml	IL-1 β , pg/ml
Relatively healthy (intact group) (n = 30)	56.2 \pm 3.3	0.92 \pm 0.05
Control group upon admission (n = 30)	234.3 \pm 9.5 ¹	4.7 \pm 0.14 ¹
Main group upon admission (n = 30)	252.0 \pm 14.2 ¹	4.5 \pm 0.22 ¹
Control group after treatment, 30 days (n = 30)	112.5 \pm 7.5 ^{1*}	2.2 \pm 0.031 * ¹
Main group after treatment (Sodium selenite pentahydrate) (n = 30)	87.0 \pm 7.6 ^{1*}	1.7 \pm 0.05 ^{1*}

Table 2

Cytoprotection markers in the blood of patients with CGP before and after 30 days of drug treatment

Patient groups	HIF-1 α , pg/ml	HSP70, pg/ml
Relatively healthy (intact) group (n = 30)	100.2 \pm 8.7	80.5 \pm 6.3
Control group upon admission (n = 30)	182.3 \pm 11.5 ¹	112.3 \pm 8.7 ¹
Main group upon admission (n = 30)	178.0 \pm 10.2 ¹	109.1 \pm 7.4 ¹
Control group after optimised treatment for 30 days (n = 30)	188.5 \pm 12.2 ¹	123.7 \pm 11.5 ¹
Main group after improved treatment ("Sodium selenite pentahydrate") (n = 30)	224.0 \pm 11.6 ^{# *}	287.7 \pm 12.4 ^{# *}

Note:

¹ — The indicators are statistically significant in relation to the data of the intact group ($p < 0.05$).

* — Indicators are statistically significant in relation to pre-treatment data ($p < 0.05$).

— indicators are statistically significant in relation to the control group data ($p < 0.05$).

(a denser mucous membrane that closely adhered to the neck of the tooth, was less swollen, and no difference in colour from intact gums). Immunoenzymatic blood tests of patients in the control and main groups 1 month after complex treatment of GHP also showed improvement — a reduction in inflammation and an increase in endogenous cytoprotection mechanisms. The most pronounced positive changes were observed in patients in the main group, who additionally received sodium selenite pentahydrate. Thus, in patients in the main group, with the additional appointment of a targeted antioxidant drug in the complex therapy of CGP, a significant decrease in the concentration of TNF- α in the blood (by 65.4%) was observed compared to the indicators before treatment. In the control group, the level of TNF- α decreased by 52.1% compared to the data at the beginning of treatment ($p < 0.05$). Patients in the main group also showed a decrease in blood IL-1 β concentration (62.2%) compared to pre-treatment levels ($p < 0.05$), while in the control group this indicator decreased by 51.1% ($p < 0.05$). The concentration of TNF- α and IL-1 β in the blood of patients with CGD in the main group after 30 days of treatment was lower than the concentration of TNF- α and IL-1 β in the control group for the same observation period ($p < 0.05$), indicating a significant increase in the anti-inflammatory effect of complex therapy due to the inclusion of a drug with the active ingredient sodium selenite pentahydrate. Immunoenzymatic analysis revealed a 25.8% increase in the concentration of HIF-1 α in the blood of patients in the main group, which was observed 30 days after treatment ($p < 0.05$) and was 2.24 times higher than the values in the intact group ($p < 0.05$). In the blood of patients in the main group, the additional introduction of an antioxidant drug into complex therapy also led to an increase in HSP70 cytoprotection after 30 days of treatment by 163.9% ($p < 0.05$) and by 257.4% compared to intact values ($p < 0.05$). In the control group of patients with CGP who received standard therapy without prior antioxidant modification, no significant changes in the concentration of HSP70 and HIF-1 α in the corresponding blood were found before and after treatment. The results obtained indicate intensive activation of endogenous cytoprotection mechanisms after complex therapy of CGP due to the inclusion of a targeted selenium-containing drug (active ingredient sodium selenite pentahydrate).

Chronic generalised periodontitis is an inflammatory disease that affects the tissues supporting the teeth andulti-

mately causes their loss. Currently, the aetiology of periodontitis is characterised by both general dysbiosis of the host and focal dysbiosis of the oral microbiota. Periodontal pathogenic bacteria and their waste products trigger a complex molecular-genetic cascade mechanism of activation of immune and inflammatory responses, initiation of oxidative stress, mitochondrial dysfunction, and apoptosis. Lipopolysaccharides of periodontal pathogenic bacteria cause the production of pro-inflammatory cytokines [11].

In addition, *actinobacillus actinomycetemcomitans*, the causative agent of aggressive periodontitis, increases IL-1 β expression in human mononuclear leukocytes and macrophages. Leukotoxin, an important virulence factor that affects leukocytes, rapidly activates Caspase-1 and thus causes massive secretion of IL-1 β in human monocytes and macrophages. The NLRP3 inflammasome, reactive oxygen species, and cathepsin B may be involved in this process. Proinflammatory cytokines — TNF- α , IL-6, IL-17, and especially IL-1 β lead to inflammation and damage to periodontal tissues. IL-1 β promotes bone resorption and induces the production of proteases and caspases, as well as matrix metalloproteinases (MMP-9, MMP-2, MMP-3). Matrix metalloproteinases promote the degradation of the extracellular matrix and lead to bone resorption and tissue destruction. IL-1 β increases the expression of matrix metalloproteinases in various cell types involved in periodontal inflammation, including osteoblasts, osteoclasts, neutrophils, and cementoblasts in human periodontal ligament cells and gingival fibroblasts [12; 13]. Elevated levels of IL-1 β and TNF- α are often found in the saliva, gingival crevicular fluid, and blood of patients with periodontitis compared to healthy control subjects. There is a positive correlation between IL-1 β and TNF- α concentrations and periodontal pocket depth, bleeding, and tooth mobility in CGP. Moreover, high concentrations of IL-1 β in patients with chronic periodontitis can have a negative systemic effect on the cardiovascular and endocrine systems: increasing the risk of diabetes mellitus, ischaemic heart disease, chronic heart failure, and arterial hypertension. Experimental studies have shown that chronic periodontitis in laboratory animals is accompanied by persistent changes in the expression of molecular markers of endogenous cytoprotection — HSP70 and HIF-1 [14; 15]. The role of HSP70 chaperone proteins has been well studied and consists in protecting cells from oxidative and nitrosative stress, apoptosis, infection, pyroptosis, and inflammation. HSP70 has

a positive effect on mineral metabolism, activates and regulates compensatory energy shunts during tissue hypoxia and ischaemia, prolonging the physiological effect of anti-hypoxic factors (HIF) [16]. In periodontal inflammation, HSP70 is expressed in response to increased IL-1 β concentrations and acts as an endogenous cytoprotector. However, extremely high concentrations of IL-1 β and TNF- α limit HSP70 expression or even cause its deprivation. Depending on the severity of chronic periodontitis, HSP70 levels may be either moderately elevated (mild to moderate) or decreased (severe) [17]. Comprehensive clinical and experimental data on the role of HIF-1 α in inflammatory periodontal diseases have also been obtained. HIF-1 α expression in periodontitis is triggered in response to increased levels of pro-inflammatory cytokines (IL-1 β , TNF- α , IL-17) and NO. In turn, HIF-1 α plays a protective role in periodontitis by enhancing immune defence, increasing the expression of VEGF and eNOS, and stimulating erythropoiesis. It is also known that HIF-1 α in extreme cellular conditions, as well as in inflammation and infection, can positively influence energy metabolism by activating the compensatory malate-aspartate shuttle mechanism [18]. HIF-1 α expression is closely related to the severity of inflammation, the concentration of pro-inflammatory cytokines and ROS. Elevated concentrations of IL-1 β begin to inhibit HIF-1 α mRNA expression and then reduce the level of HIF-1 α protein itself in periodontitis, leading to a disruption of endogenous cytoprotection. Mild to moderate periodontitis leads to an increase in fibroblast-like and leukocyte-like cells expressing HIF-1 α . In patients with periodontitis of this severity, increased concentrations of HIF-1 α , VEGF, and TNF- α have been reported in periodontal pockets. More severe forms of CPG lead to a decrease in HIF-1 α expression [19].

In this regard, pharmacological modulation of HIF-1 expression and prolongation of its "lifetime" in periodontitis is considered a promising direction in the treatment of inflammatory periodontal diseases. This approach not only reduces inflammation but also reduces local ischaemia by improving the energy metabolism of periodontal tissues – more rational use of pO₂ by switching to more

economical ways of ATP synthesis. Pharmacological modulation of HIF-1 also enhances glycolytic metabolism, which is necessary for B-cell development and T-cell metabolism. This is due to the influence of HIF-1 on the mechanisms of pyruvate dehydrogenase expression in periodontal tissues. Pharmacological modulation of HIF-1 α increases bone tissue regeneration, improves mineralisation and the osteogenic potential of periodontal ligament stem cells. It is known that an increase in HSP70 levels and prolongation of the "lifetime" of HIF-1 α can be achieved through glutathione-dependent mechanisms under the action of selenium derivatives. Selenium derivatives also have a positive effect on the expression of glutathione peroxidase, inhibit the peroxidation of cell membrane phospholipids, and reduce the concentration of pro-inflammatory metabolites of arachidonic acid [20].

Conclusions

Based on molecular-biochemical and clinical studies, it has been established that the additional inclusion of an antioxidant based on sodium selenite pentahydrate (50 μ g/day, 5 sessions of electrophoresis, then internally) is effective in the complex treatment of chronic generalised periodontitis.

The additional inclusion of a targeted selenium-containing drug in the complex treatment of CPG potentiates and accumulates the anti-inflammatory effect of therapy, as evidenced by a more pronounced decrease in IL-1 β and TNF- α in the blood of patients after 30 days of treatment ($p < 0.05$) compared to the control group.

The inclusion of sodium selenite pentahydrate leads to the activation of endogenous cytoprotection mechanisms after 30 days of complex treatment of CPG – an increase in the concentration of HSP70 and HIF-1 ($p < 0.05$) compared to the data of patients in the control group.

The results obtained demonstrate the promise of using preparations based on sodium selenite pentahydrate and derivative pharmacological configurations as an important component of the antioxidant component of complex therapy for chronic generalised periodontitis.

BIBLIOGRAPHY

1. Gasner NS, Schure RS, Periodontal Disease. [Updated 2025 May 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-Available from: <https://www.ncbi.nlm.nih.gov/books/NBK554590>.
2. Di Spirito F, Di Palo MP, De Benedetto G, et al. Periodontal Microbial Profiles Across Periodontal Conditions in Pediatric Subjects: A Narrative Review. *Microorganisms*. 2025; 13(8): 1813. <https://doi.org/10.3390/microorganisms13081813>.
3. Cui Z, Wang P, Gao W. Microbial dysbiosis in periodontitis and peri-implantitis: pathogenesis, immune responses, and therapeutic. *Front Cell Infect Microbiol*. 2025 Feb 11; 15: 1517154. DOI: 10.3389/fcimb.2025.1517154.
4. Zeng MY, Miralda I, Armstrong CL, Uriarte SM, Bagaikar J. The roles of NADPH oxidase in modulating neutrophil effector responses. *Mol Oral Microbiol*. 2019 Apr; 34(2): 27–38. DOI: 10.1111/omi.12252.
5. Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenyich V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. *Antioxidants (Basel)*. 2024 Apr 23; 13(5): 504. DOI: 10.3390/antiox13050504.
6. Götz L, Memmert S, Rath-Deschner B, et al. Hypoxia and *P. gingivalis* synergistically induce HIF-1 and NF- κ B activation in PDL cells and periodontal diseases. *Mediators Inflamm*. 2015; 2015: 438085. DOI: 10.1155/2015/438085.
7. Salnykov V, Belenichev I, Makyeyeva L, Skoryna D, Oksenyich V, Kamyshnyi O. Antioxidant Mechanisms of the Protective Action of Selenase in Experimental Chronic Generalised Periodontitis. *Curr. Issues Mol. Biol.* 2025 Mar 12;47(3):186. DOI: 10.3390/cimb47030186.
8. Park J, Park S, Kim K, et al. An interactive retrieval system for clinical trial studies with context-dependent protocol elements. *PLoS One*. 18 September 2020; 15(9): e0238290. DOI: 10.1371/journal.pone.0238290.

9. Richard A McPherson, Matthew R. Henry's Clinical Diagnosis and Management by Laboratory Methods 24th Edition – 1 June 2021 Authors: Pincus Hardback. ISBN: 9780323673204.
10. Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1 β is a potential therapeutic target for periodontitis: a narrative review. *Int J Oral Sci.* 2020 Jan 2; 12(1): 2. DOI: 10.1038/s41368-019-0068-8. PMID: 31900383.
11. Brodzikowska A, Górska B, Bogusławska-Kapała A. Association between IL-1 Gene Polymorphisms and Stage III Grade B Periodontitis in Polish Population. *Int. J. Environ. Res. Public Health.* 2022; 19: 14687. <https://doi.org/10.3390/ijerph192214687>.
12. Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium – Vital in Tissue Turnover and Unfortunate in Periodontitis. *Int. J. Mol. Sci.* 2024; 25: 2763. <https://doi.org/10.3390/ijms25052763>.
13. Belenichev I, Salnykov V, Samura I. The Effect of Selenase on Inflammatory and Cytoprotective Markers in Experimental Chronic Generalised Periodontitis. *Biomed Pharmacol J.* 2024; 17(3): 1911–1919. <https://dx.doi.org/10.13005/bpj/2993>.
14. Jansson L, Lundmark A, Modin C, Gustafsson A, Yucel-Lindberg T. Levels of matrix metalloproteinase-1 (MMP-1), MMP-2, MMP-3, osteopontin, pentraxin-3, and thymic stromal lymphopoietin in crevicular fluid samples from peri-implantitis, periodontitis, and healthy sites. *J Periodontal Res.* 2025 May; 60(5): 473–483. DOI: 10.1111/jre.13338.
15. Shan C, Xia Y, Wu Z, Zhao J. HIF-1 α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. *Prog Biophys Mol Biol.* 2023 Nov; 184: 50–78. DOI: 10.1016/j.pbiomolbio.2023.
16. Furuse N, Takai H, Ogata Y. Effects of Initial Periodontal Therapy on Heat Shock Protein 70 Levels in Gingival Crevicular Fluid from Periodontitis Patients. *J Clin Med.* 2020 Sep 24; 9(10): 3072. DOI: 10.3390/jcm9103072.
17. Takai H, Furuse N, Ogata Y. Anti-heat shock protein 70 levels in gingival crevicular fluid of Japanese patients with chronic periodontitis. *J Oral Sci.* 23 June 2020; 62(3): 281–284. DOI: 10.2334/josnusd.19-0159.
18. Aliyeva OG, Belenichev I F, Popazova OO. HIF-1 α as a Potential Target for Pharmacologic Correction after Prenatal Hypoxia. *Proceedings.* 2024; 103(1): 55. <https://doi.org/10.3390/proceedings2024103055>.
19. López-Valverde N, López-Valverde A, Montero J, Rodríguez C, Macedo de Sousa B., Aragoneses JM. Antioxidant, anti-inflammatory and antimicrobial activity of natural products in periodontal disease: a comprehensive review. *Front. Bioeng. Biotechnol.* 2023; 11: 1226907. DOI: 10.3389/fbioe.2023.1226907.
20. Sies H, Mailloux R J, Jakob U. Fundamentals of redox regulation in biology. *Nat Rev Mol Cell Biol.* 2024 Sep; 25(9): 701–719. DOI: 10.1038/s41580-024-00730-2. Epub 30 Apr 20. Erratum in: *Nat Rev Mol Cell Biol.* 2024 Sep; 25(9): 758. DOI: 10.1038/s41580-024-00754-8.

Надійшла до редакція 14.07.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування salnykov.v.i@gmail.com

Н. Л. Сарафанюк <https://orcid.org/0000-0002-9765-403X>

М. О. Клименко <https://orcid.org/0000-0002-7671-1891>

ПРОДУКЦІЯ ІНТЕРЛЕЙКІНІВ 1В, 2, 4, 10 ТА С-РЕАКТИВНОГО БІЛКА ПРИ ХРОНІЧНІЙ ІШЕМІЇ МОЗКУ

Чорноморський національний університет імені Петра Могили, Миколаїв, Україна

УДК 616-092:616.8:616.005:616-002:616-008

Н. Л. Сарафанюк, М. О. Клименко

ПРОДУКЦІЯ ІНТЕРЛЕЙКІНІВ 1В, 2, 4, 10 ТА С-РЕАКТИВНОГО БІЛКА ПРИ ХРОНІЧНІЙ ІШЕМІЇ МОЗКУ

Чорноморський національний університет імені Петра Могили, Миколаїв, Україна

У статті наведено дані про вміст інтерлейкінів 1В, 2, 4 та 10, а також загальноприйнятого маркера запалення – С-реактивного білка – у периферичній крові до та після лікування (на першу та десяту добу) у пацієнтів з хронічною ішемією мозку (ХІМ). Отримані результати мають істотне значення для з'ясування механізмів та розробки методів діагностики, прогнозування та патогенетичної терапії ХІМ.

Ключові слова: хронічні неінфекційні захворювання, хронічна ішемія мозку, нейрозапалення, цитокіні, С-реактивний білок.

UDC 616-092:616.8:616.005:616-002:616-008

N. L. Sarafanyuk, M. O. Klymenko

PRODUCTION OF INTERLEUKINS 1B, 2, 4, 10 AND C-REACTIVE PROTEIN IN CHRONIC CEREBRAL ISCHEMIA

Petro Mohyla Black Sea National University, Mykolaiv, Ukraine

Introduction. Cytokines are signal molecules that modulate the immune system to cell activation, differentiation and proliferation. Having pro-inflammatory and anti-inflammatory effects, they trigger endothelial cells, neurons and glia to the inflammatory process and, depending on their concentration in the blood, can limit or maintain the pathological process.

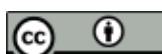
The aim of the study was to determine the content of interleukins (IL) 1 β , 2, 4 and 10, as well as a generally accepted marker of inflammation – C-reactive protein (CRP) – in peripheral blood before and after treatment (on the first and tenth day) in patients with chronic cerebral ischemia (CCI).

Materials and Methods. The study involved 25 people with CCI (9 people – stage I disorder, 8 people – stage II, 8 people – stage III) and 14 people in the control group. Cytokines and CRP were determined by ELISA method.

Results and Conclusions. On the first day there is a significant increase in the content of all studied interleukins and CRP compared to control, which indicates the presence of inflammation. The level of pro-inflammatory cytokines – IL-1 β and IL-2 (and of them – IL-2, in particular) increases which indicates the leading role of innate and cellular adaptive immunity, especially the latter, among immune mechanisms in the pathogenesis of CCI. On the tenth day, a decrease in the level of IL-1 β , IL-2 and CRP was noted compared to the first day, which, however, remained higher than the control, and a further increase in the content of anti-inflammatory IL-4 and IL-10 relative to the control. This indicates that the inflammatory process is decreasing, but still occurs. It was also established that the content of IL-1 β , IL-2, IL-10 and CRP depends on the severity of CCI.

Keywords: chronic non-communicable diseases, chronic cerebral ischemia, neuroinflammation, cytokines, C-reactive protein.

Вступ


Хронічна ішемія мозку (ХІМ) є однією з основних проблем суспільної охорони здоров'я. Це стійке зниження мозкового кровотоку, спричинене тривалим судинним захворюванням або порушеннями кровообігу. ХІМ може проявлятися головним болем, запамороченням, когнітивним дефіцитом. Значно зростає ризик інсульту. 70% пацієнтів з ХІМ мають вік більше 80 років, а біля 30% – 45–50 років [1]. В Україні біля 5,6% населення страждають на ХІМ, а захворюваність за 10 років збільшилася майже удвічі [2].

В МКХ-10 ХІМ відноситься до IX класу хвороб («Хвороби системи кровообігу»), рубрики I67

(«Інші ураження судин головного мозку») та має код I67.8 – «Інші уточнені цереброваскулярні захворювання. Гостра цереброваскулярна недостатність. Ішемія головного мозку (хронічна)».

У патогенезі ХІМ основну роль відіграють запально-нейроімунні процеси [3]. При хронічній гіпоксії спостерігаються множинні осередки ураження головного мозку, де після загибелі нейронів запускається вторинна імунна відповідь з активацією глії, периферичних імунних клітин та вивільненням цитокінів і хемокінів, тобто розвитком хронічного дифузного низькоінтенсивного запалення [4, 5]. Показано, що після мозкового інсульту, включаючи гострий ішемічний інсульт і внутрішньомозковий крововилив, крім гострого запалення, локалізованого в пошкоджений ділянці мозку, в патофізіологічний процес включається глобальне менш інтенсивне запалення головного мозку, що призводить до нейродегенерації [6]. Враховуючи вік досліджуваних пацієнтів, слід мати на увазі, що вони

© Н. Л. Сарафанюк, М. О. Клименко, 2025

Стаття поширюється на умовах ліцензії

також мають так зване «inflammaging» (запальне старіння), що характеризується підвищеним рівнем циркулюючих цитокінів та прозапальних маркерів [7]. Стійке підвищення продукції периферичних медіаторів запалення – інтерлейкінів (IL) 1 β та 10, та С-реактивного білка (СРБ) протягом 12 років дає підстави прогнозувати наявність порушення пам'яті в майбутньому [8].

Таким чином, ХІМ – складне патологічне явище, яке може включати осередкове гіпоксичне та інсультне пошкодження, гіпоксичне хронічне дифузне низькоінтенсивне запалення, постінсультне гостре запалення, постінсультне глобальне низькоінтенсивне запалення, що посилюється запальним старінням.

Інтерлейкіни відіграють велику роль у нейрозапаленні при гіпоксичних пошкодженнях головного мозку (ГПГМ). Передаючи інформацію імунним клітинам, вони сприяють активації, регуляції, розмноженню та диференціюванню Т-і В-лімфоцитів. Але існують перевесні перешкоди між різними інтерлейкінами у різних імунних клітинах, які визначають результат ГПГМ [9, 10].

Метою дослідження стало визначення вмісту IL1 β , 2, 4, 10 та СРБ у периферичній крові до та після лікування (на першу та десяту добу) у пацієнтів з ХІМ. Вказаній перелік та комбінація цитокінів цікаві тим, що вони є маркерами різних клітин-ефекторів запалення та імунної відповіді, що дозволяє охарактеризувати роль про- та протизапальних механізмів, вроджених та адаптивних імунних реакцій у патогенезі захворювання. IL-1 β є маркером функціональної активності моноцитів-макрофагів та вродженого клітинного імунітету, IL-2 – Т-лімфоцитів-хеллерів 1 типу (Th1) та адаптивного клітинного імунітету, інтерлейкіни 4 та 10 – Т-хеллерів 2 типу (Th2) та гуморального адаптивного імунітету. Інтерлейкіни 1 β та 2 є прозапальними, 4 та 10 – протизапальними. СРБ є загальноприйнятим маркером наявності та виразності запалення. У попередній роботі ми досліджували продукцію IL 1 β , 2, 4 та 10, а також СРБ у пацієнтів у динаміці ішемічного інсульту [11]. При ХІМ такого комплексного дослідження ми не виявили.

Матеріали та методи дослідження

До дослідження були залучені 25 осіб з ХІМ (13 чоловіків та 12 жінок) та 14 осіб контрольної групи (7 чоловіків та 7 жінок). Середній вік пацієнтів основної групи становив $61,24 \pm 0,847$, осіб групи контролю – $60,0 \pm 2,480$ (M \pm SE).

Критеріями виключення були гострі запальні, автімунні, нейродегенеративні захворювання, цукровий діабет та пухлинні процеси.

Показами до госпіталізації були наявність загально-мозкової та вогнищевої симптоматики: при ХІМ I стадії – з неврологічними порушеннями легкого ступеня, незначними когнітивними та емоційними порушеннями, відсутністю вираженого неврологічного дефіциту, суб'єктивними скаргами такими, як головний біль, запаморочення, шум в голові, нестійкість під час ходи, порушення зору, симптоми орального автоматизму; II стадії – з порушеннями середнього ступеня, зокрема стійкими когнітивними й руховими розладами,

порушенням професійної та соціальної адаптації, головним болем, шумом у голові, порушенням ходьби, координації, труднощами з ковтанням, тремором голови і рук, порушенням когнітивних функцій, підвищеннем рефлексів орального автоматизму, пірамідною недостатністю тощо; III стадії – з порушеннями тяжкого ступеня, проявами судинної деменції, грубими руховими порушеннями, можливими порушенням тазових функцій, іноді судомами, псевдобульбарним та аміотичним синдромами [12]. До першої групи належало 9 осіб (36%), до другої групи – 8 осіб (32%) і до третьої групи – 8 осіб (32%). Коморбідна патологія вбирала атеросклеротичне ураження судин, артеріальну гіпертензію, ішемічну хворобу серця.

Для лікування пацієнтам призначали мельдоній 500 мг (5 мл) один раз на добу в/в; холіну альфосцерат по 7 мл розчину орального 2 рази на добу; цитиколін 500 мг 2 рази на добу в/м; морфолінієву сіль тіазотної кислоти та пірацетам (відповідно 25 мг, що еквівалентно 16,6 мг тіазотної кислоти, та 100 мг в 1 мл) – 30 мл розчину, попередньо розведеного у 150 мл 0,9% розчину натрію хлориду, в/в крапельно 1 раз на добу. Лікування проводилось протягом 10 днів дослідження. Лікування проводилось на базі КНП Міська клінічна лікарня №4 Миколаївської міської ради.

Дослідження проводили на першу та десяту добу від надходження пацієнта до стаціонару, тобто до та після лікування. Забирали венозну кров, яку центрифугували при 3000 об/хв протягом 10–15 хв., і отримані зразки сироватки заморожували при -20°C до проведення аналізу.

Рівні IL-1 β , IL-2, IL-4 та IL-10 у крові визначали імуноферментним методом за допомогою відповідних наборів реактивів ІФА-БЕСТ та інструкцій виробника. Також визначали вміст в крові високочутливого СРБ (high sensitive CRP – hsСРБ) [14]. Результати реєстрували на спектрофотометрі СФ-46. Обрахування результатів проводили за калібрувальними графіками.

Отримані результати перевіряли на нормальність розподілу та піддавали статистичній обробці з використанням t-критерію Стьюдента, апостеріорного тесту Бонфероні та критерію Пірсона.

Всі пацієнти надали інформовану згоду на участь у дослідженні, яке здійснювалося з дотриманням принципів Етичного кодексу Всеєвропейської медичної асоціації (Гельсінська декларація). Дослідження було схвалено комісією з питань етики ЧНУ імені Петра Могили (засдання комісії від 16.11.2020, протокол №1).

Результати дослідження та їх обговорення

У контролі у крові значно переважали концентрації IL-1 β ($1,445 \pm 0,010$ пг/мл) та IL-10 ($3,235 \pm 0,224$ пг/мл) над рівнями IL-2 ($0,074 \pm 0,014$ пг/мл) та IL-4 ($0,110 \pm 0,023$ пг/мл), а поміж IL-1 β та IL-10 – IL-10 над IL-1 β . Це, певно, пояснюється тим, що в контролі переважно задіяні вроджений імунітет та протизапальні механізми. Вміст СРБ становив $1,354 \pm 0,068$ мг/л.

На 1-шу добу госпіталізації вміст IL-1 β у крові пацієнтів з ХІМ був значно вищий, ніж в контрольній групі, – в 2,55 разу. Після лікування (на 10-у добу) він вірогідно знизвися – в 1,32 разу – порівняно з першою

добою, але залишився достовірно більшим за контроль – в 1,93 разу (рис. 1).

Рівень IL-2 на 1-шу добу був багаторазово вищий, ніж в контрольній групі, – в 11,07 разу. Після лікування він значно знизився в порівнянні з першою добою – в 4,58 разу, але залишився набагато більшим за контроль – в 2,42 разу. Концентрація IL-4 на 1-шу добу була вірогідно вищою, ніж в контрольній групі, – в 1,65 разу. Після лікування вона зросла ще більше і стала в 4,19 разу вищою за контроль та 2,53 разу – порівняно з першою добою. Кількість IL-10 на 1-шу добу була достовірно вищою за контроль – в 2,06 разу, а після лікування зросла ще більше і стала в 2,36 разу вищою, ніж в контрольній групі, та в 1,15 разу ($p<0,001$) – в порівнянні з першою добою. Концентрація СРБ в крові на 1-шу добу була вірогідно вищою в порівнянні з контрольною групою – в 2,66 разу. Після лікування вона достовірно знизилася порівняно з першою добою – в 1,3 разу, але залишилася вірогідно більшою за контроль – в 2,03 разу.

При дослідженні вмісту цитокінів та СРБ у крові пацієнтів з ХІМ в залежності від стадії захворювання виявлено, що на 1-шу добу рівень IL-1 β був значно вищий порівняно з контролем при всіх трьох стадіях ХІМ – першій, другій і третій – відповідно в 1,99, 2,62 та 3,11 разу. При II β стадії він був вірогідно більший, ніж при I β , а при III β стадії – вищий, ніж при I β , та статистично не перевищував II β (табл. 1).

Концентрація IL-2 була багаторазово підвищена при всіх стадіях захворювання – відповідно в 10,51, 13,88 та 8,86 разу – і між стадіями статистично не відрізнялася. Вміст IL-4 був вірогідно збільшений при I β та III β стадіях – відповідно в 1,74 та 1,8 разу, а при II β вірогідно не відрізнявся від контролю. Також він достовірно не відрізнявся між стадіями. Рівень IL-10 був вірогідно підвищений при всіх стадіях захворювання – відповідно в 1,81, 1,9 та 2,49 разу. При II β стадії він достовірно не

відрізнявся від I β , а при III β – був більший за II β та I β стадії. Концентрація СРБ була значно збільшена при всіх стадіях захворювання – відповідно в 2,12, 2,71 та 3,16 разу. При I β стадії вона була вища за II β , а при III β – більша, ніж при I β , та статистично не відрізнялася від II β .

При дослідженні вмісту цитокінів та СРБ у крові пацієнтів з ХІМ в залежності від стадії захворювання на 10-ту добу (після лікування) з'ясовано, що рівень IL-1 β був значно більший за контроль при всіх стадіях ХІМ – I β , II β , III β – відповідно в 1,51, 2,05 та 2,29 разу. При II β стадії він був вищий, ніж при I β , а при III β – більший, ніж при I β , та вірогідно не відрізнявся від II β (табл. 2).

Концентрація IL-2 при I β та III β стадіях статистично не відрізнялася від контролю, а при II β стадії була значно більшою за контроль – в 3,84 разу. При II β стадії вона була вірогідно вищою, ніж при I β , а при III β – достовірно зменшувалася порівняно із II β стадією, так що не відрізнялася від I β стадії та контролю. Кількість IL-4 була значно більша при всіх стадіях, ніж в контролі, – відповідно в 4,15, 4,26 та 4,16 разу, та не відрізнялася між групами. Вміст IL-10 був значно більший за контроль при всіх стадіях – відповідно в 2,18, 2,10 та 2,81 разу. При II β стадії він не відрізнявся від I β , а при III β – був вірогідно вищий, ніж при I β та II β стадіях. Рівень СРБ був значно вищий за контроль при всіх стадіях – відповідно в 1,83, 2,24 та 2,05 разу. При II β стадії він був вірогідно більший, ніж при I β , а при III β – статистично не відрізнявся від I β та II β .

При з'ясуванні кореляційних зв'язків між дослідженнями показниками встановлено, що на 1-шу добу мається помірний позитивний зв'язок між концентраціями IL-1 β і IL-10 ($r=0,471$, $p=0,017$) та IL-10 і СРБ ($r=0,537$, $p=0,006$); на 10-у добу – між вмістом IL-1 β і IL-10 ($r=0,489$, $p=0,013$).

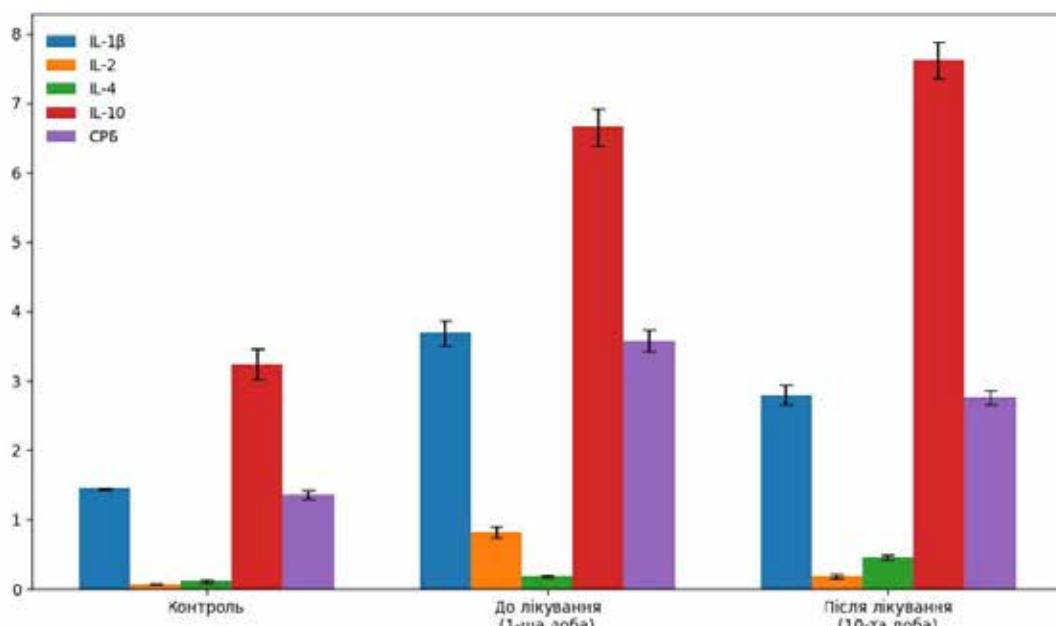


Рис. 1. Вміст цитокінів (pg/мл) та СРБ (мг/л) у крові пацієнтів з хронічною ішемією мозку до лікування (1-ша доба) та після лікування (10-та доба). $p<0,05$ порівняно з контролем та показником до лікування (M \pm SE)

Таблиця 1

**Вміст цитокінів та СРБ у крові пацієнтів з хронічною ішемією мозку до лікування (на 1-шу добу)
в залежності від стадії XIM (M \pm SE)**

Показник	Стадія XIM		
	I	II	III
IL-1 β , пг/мл	2,881 \pm 0,125 $p_1 < 0,001$	3,793 \pm 0,253 $p_1 < 0,01$ $p_2 < 0,05$	4,492 \pm 0,257 $p_1 < 0,001$ $p_2 < 0,001$ $p_3 > 0,05$
IL-2, пг/мл	0,778 \pm 0,117 $p_1 < 0,001$	1,027 \pm 0,085 $p_1 < 0,001$ $p_2 > 0,05$	0,656 \pm 0,173 $p_1 < 0,05$ $p_2 > 0,05$ $0,05 < p_3 < 0,1$
IL-4, пг/мл	0,191 \pm 0,011 $p_1 < 0,05$	0,156 \pm 0,023 $p_1 > 0,05$ $p_2 > 0,05$	0,198 \pm 0,019 $p_1 < 0,05$ $p_2 > 0,05$ $p_3 > 0,05$
IL-10, пг/мл	5,844 \pm 0,254 $p_1 < 0,001$	6,161 \pm 0,418 $p_1 < 0,001$ $p_2 > 0,05$	8,054 \pm 0,334 $p_1 < 0,001$ $p_2 < 0,001$ $p_3 < 0,01$
СРБ, мг/л	2,876 \pm 0,126 $p_1 < 0,001$	3,675 \pm 0,227 $p_1 < 0,001$ $p_2 < 0,01$	4,275 \pm 0,182 $p_1 < 0,001$ $p_2 < 0,001$ $0,05 < p_3 < 0,1$

Примітка. p_1 – порівняно з контролем, p_2 – порівняно з I^{ою} стадією, p_3 – порівняно з II^{ою} стадією.

Таблиця 2

**Вміст цитокінів та СРБ у крові пацієнтів з хронічною ішемією мозку після лікування (на 10-ту добу)
в залежності від стадії XIM (M \pm SE)**

Показник	Стадія XIM		
	I	II	III
IL-1 β , пг/мл	2,178 \pm 0,111 $p_1 < 0,001$	2,971 \pm 0,234 $p_1 < 0,001$ $p_2 < 0,01$	3,309 \pm 0,201 $p_1 < 0,001$ $p_2 < 0,001$ $p_3 > 0,05$
IL-2, пг/мл	0,116 \pm 0,038 $p_1 > 0,05$	0,284 \pm 0,041 $p_1 < 0,001$ $p_2 < 0,01$	0,144 \pm 0,047 $p_1 > 0,05$ $p_2 > 0,05$ $p_3 < 0,05$
IL-4, пг/мл	0,457 \pm 0,040 $p_1 < 0,001$	0,469 \pm 0,048 $p_1 < 0,001$ $p_2 > 0,05$	0,458 \pm 0,064 $p_1 < 0,001$ $p_2 > 0,05$ $p_3 > 0,05$
IL-10, пг/мл	7,047 \pm 0,271 $p_1 < 0,001$	6,796 \pm 0,324 $p_1 < 0,001$ $p_2 > 0,05$	9,087 \pm 0,337 $p_1 < 0,001$ $p_2 < 0,001$ $p_3 < 0,001$
СРБ, мг/л	2,484 \pm 0,146 $p_1 < 0,001$	3,030 \pm 0,179 $p_1 < 0,001$ $p_2 < 0,05$	2,776 \pm 0,155 $p_1 < 0,001$ $p_2 > 0,05$ $p_3 > 0,05$

Примітка. p_1 – порівняно з контролем, p_2 – порівняно з I^{ою} стадією, p_3 – порівняно з II^{ою} стадією.

Отже, до лікування в крові був значно збільшений вміст всіх досліджуваних цитокінів. Це свідчить про активацію імунозапальних клітин – моноцитів-макрофагів, Th 1 та 2, тобто вродженого і клітинного та гуморального адаптивного імунітету, наявність запалення. Останнє підтверджується значним зростанням рівня

СРБ у крові. Найбільш підвищений був вміст IL-1 β та IL-2, що вказує на переважну активацію вродженого та клітинного адаптивного імунітету над адаптивним гуморальним, продукцією прозапальних цитокінів над протизапальними. Активація вродженого імунітету при XIM уявляється природною, оскільки він є першою

лінією захисту за будь-якої патології. Також моноцити-макрофаги, які є джерелом IL-1 β , є головними ефекторами хронічного запалення, взаємопов'язаного з XIM. Найбільша активація клітинного адаптивного імунітету (в 11,07 разу за вмістом IL-2 у крові) свідчить про його провідну роль серед імунних механізмів в патогенезі XIM. Переважання продукції прозапальних цитокінів над протизапальними теж є зрозумілим, оскільки йдеться про наявність запалення. При цьому протизапальні механізми теж активуються, як контрольні.

В процесі лікування значно зменшується активація вродженого та клітинного адаптивного імунітету, вміст прозапальних цитокінів у крові, що свідчить про зниження виразності XIM та взаємопов'язаного з нею хронічного запалення. Це підтверджується зменшенням концентрації СРБ у крові. При цьому рівень прозапальних цитокінів та СРБ залишається вірогідно підвищеним порівняно як з контролем, так і першою добою. Це зрозуміло, оскільки XIM повністю не зникає, захворювання триває, хронічний запальний процес продовжується. Водночас активація гуморального адаптивного імунітету, продукція протизапальних цитокінів IL-4 та IL-10 продовжує нарости, що вказує на пригнічення, під впливом лікування, прозапальних механізмів та подальшу активацію і переважання протизапальних, тобто на зменшення патологічних та збільшення захисно-пристосувальних явищ при XIM, покращення становища, позитивний ефект терапії.

Що стосується залежності продукції цитокінів та СРБ від стадії (тяжкості) захворювання, то на 1-шу добу вміст IL-1 β , IL-10 та СРБ зростає зі збільшенням стадії (тяжкості) XIM. Продукція IL-2 підвищується при всіх ступенях тяжкості XIM та статистично не відрізняється між ступенями. Однак у кількісному вираженні вона є найбільшою відносно контролю при всіх ступенях. Концентрація IL-4 зростає при легкому (І стадія) та тяжкому (ІІІ стадія) ступенях та достовірно не змінюється зі збільшенням тяжкості захворювання. На 10-ту добу закономірності змін, характерні для першої доби, в основному зберігаються, але зрозуміло, що внаслідок лікування вони відбуваються на тлі менших рівнів прозапальних та більших показників протизапальних маркерів, ніж на першу добу. Вміст IL-1 β зростає зі збільшенням тяжкості XIM. Рівень IL-2 значно підвищується при середньому ступені, а при тяжкому – достовірно зменшується порівняно з середнім. Кількість IL-4 збільшується при всіх ступенях та не відрізняється між ними. Концентрація IL-10 однаково збільшується при легкому та середньому ступенях, та особливо – при тяжкому, коли стає вірогідно більшою за ці ступені. Рівень СРБ при легкому та середньому ступенях нарости, а при тяжкому – статистично не відрізняється від цих ступенів. Ці дані показують, що тяжкість перебігу XIM взаємопов'язана зі змінами вродженого та адаптивного клітинного імунітету (продукції IL-1 β та IL-2), а також адаптивного гуморального, зокрема продукції IL-10 як сильного протизапального та нейропротекторного цитокіна. Це узгоджується з тим, що макрофаги та лімфоцити є основними клітинами-ефекторами хронічного запалення, які взаємно регулюють функціональну активність одніх за допомогою цитокінів. Моно-

кіни, особливо IL-1, зумовлюють системну запальну відповідь (systemic inflammatory response – SIR), одним з проявів якої є посиленний синтез гепатоцитами білків гострої фази, зокрема СРБ.

Позитивний кореляційний зв'язок між рівнями IL-1 β та IL-10 на 1-шу та 10-у добу, очевидно, пов'язаний з тим, що при запаленні активуються як прозапальні, так і протизапальні, контрольні, механізми. Також він може пояснюватися тим, що IL-1 β продуктується при ХПМК в основному мікроглію (макрофагами-резидентами центральної нервової системи), а IL-10 – зокрема, астроцитами (субтип гіпіальних клітин). На периферії джерелом IL-1 β є моноцити-макрофаги, IL-10 – зокрема, теж моноцити. Позитивний кореляційний зв'язок між кількістю IL-10 і СРБ на 1-шу добу може бути зумовлений тим, що, як показано, продукція усіх цитокінів та СРБ до лікування збільшена. На 10-у добу такого зв'язку немає, оскільки вміст IL-10 продовжує нарости, як протизапального цитокіна, а СРБ – зменшується, як маркера виразності запалення, після лікування.

Аналізуючи вплив лікування на імунологічні показники при XIM, варто зазначити, що патогенетичний ланцюг XIM вбирає ішемію, гіпоксію, енергоефіцит, порушення різних видів обміну речовин, зокрема фосфоліпідного, особливо фосфатидилхолінового, утворення активних форм кисню та продуктів перекисного окислення, запалення, взаємопов'язане з активацією імунної системи. Все це призводить до пошкодження мембрани нейронів та активації апоптозу. Препарати, застосовані в лікуванні, зменшують запалення та активацію імунної системи як безпосередньо, так і опосередковано. Мельдоній знижує біосинтез карнітину, володіє антиоксидантними властивостями, що дозволяє йому обмежувати пошкодження клітинних мембрани. Він покращує циркуляторне забезпечення імунної системи. Цитолін теж володіє антиоксидантними властивостями, захищає клітини від пошкодження, зменшує запалення та окислювальний стрес, що знижує надмірну імунну відповідь. Холін обмежує ефекти прозапальних цитокінів (TNF- α , IL-1 β , IL-6) та захищає клітинні мембрани від пошкодження, особливо в мозку та судинах. Взаємопотенціююча дія тіазотної кислоти та пірацетаму зумовлює їх антиоксидантні та мембронастабілізуючі властивості. Всі препарати покращують нервову регуляцію імунної відповіді, зокрема через холінергічні шляхи [14, 15].

Отримані результати узгоджуються з даними літератури щодо продукції цитокінів при XIM. Так, рівні прозапального продукту моноцитів-макрофагів – IL-6 – у крові значно зростають при судинній деменції порівняно зі здоровими суб'ектами та є більшими, ніж при хворобі Альцгеймера. Вищі рівні IL-6 також пов'язані з більшим ризиком виникнення судинної деменції. Таким чином, вони можуть бути корисним біомаркером, придатним для диференціювання судинної деменції та хвороби Альцгеймера, і можуть корелювати з вищим ризиком судинної деменції у майбутньому [3]. Загалом дані про участь цитокінів у патогенезі цереброваскулярних захворювань стосуються в основному ішемічного інсульту. Наші результати показують, що

маркерами при ХІМ можуть бути певні рівні прозапальних IL-1 β та IL-2, а також протизапальних IL-4 та IL-10, в тому рахунку в комплексі.

Отримані результати розширяють існуючі уявлення про механізми ХІМ та можуть бути використані для розробки методів діагностики, прогнозу та лікування цих порушень.

Висновки

1. У пацієнтів з ХІМ на першу добу госпіталізації (до лікування) спостерігається достовірне підвищення вмісту всіх досліджуваних інтерлейкінів та СРБ у крові порівняно з контрольною групою, що свідчить про наявність запальної реакції. Особливо зростає рівень прозапальних цитокінів – IL-1 β та IL-2, а з них – IL-2, що вказує на провідну роль вродженого та клітинного адаптивного імунітету, особливо останнього, серед імунних механізмів у патогенезі ХІМ.

2. На десяту добу відзначалося зниження рівня IL-1 β , IL-2 та СРБ у порівнянні з першою добою, який, однак, залишався вищим за контроль, та подальше під-

вищення вмісту протизапальних IL-4 та IL-10 щодо контролю. Це свідчить про те, що після лікування запальний процес зменшується, але ще має місце.

3. На першу добу вміст IL-1 β , IL-10 та СРБ зростає зі збільшенням тяжкості захворювання. Продукція IL-2 підвищується при всіх стадіях ХІМ та статистично не відрізняється між ними; концентрація IL-4 зростає при І $^{\circ}$ та ІІ $^{\circ}$ стадіях та достовірно не змінюється зі збільшенням тяжкості захворювання.

4. На десяту добу вміст IL-1 β зростає зі збільшенням тяжкості ХІМ. Рівень IL-2 підвищується при ІІ $^{\circ}$ стадії, а при ІІІ $^{\circ}$ – зменшується порівняно з І $^{\circ}$. Кількість IL-4 зростає при всіх стадіях захворювання та вірогідно не відрізняється між ними. Концентрація IL-10 однаково збільшується при І $^{\circ}$ та ІІ $^{\circ}$ стадіях, та особливо – при ІІІ $^{\circ}$ стадії. Рівень СРБ при І $^{\circ}$ та ІІ $^{\circ}$ стадіях нарощає, а при ІІІ $^{\circ}$ – не відрізняється від цих стадій.

Перспективи подальших розробок. Подальші дослідження можуть бути спрямовані на з'ясування продукції інших цитокінів при ХІМ, а також при гострих порушеннях мозкового кровообігу.

ЛІТЕРАТУРА

1. Yu M, Zhang M, Fu P, et al. Research progress of mitophagy in chronic cerebral ischemia. *Front. Aging Neurosci.* 2023;15:1224633. doi: 10.3389/fnagi.2023.1224633
2. Cherniy TV, Cherniy VI, Svitlytska DV. Chronic cerebral ischemia. Modern view of the problem. *Clin prev med.* 2023;3(25):100-112. doi: 10.31612/2616-4868.3(25).2023.14 (in Ukrainian).
3. Custodero C, Ciavarella A, Panza F, et al. Role of inflammatory markers in the diagnosis of vascular contributions to cognitive impairment and dementia: a systematic review and meta-analysis. *GeroScience.* 2022;44(3):1373-1392. doi: 10.1007/s11357-022-00556-w
4. Sapin E, Peyron C, Roche F, et al. Chronic Intermittent Hypoxia Induces Chronic Low-Grade Neuroinflammation in the Dorsal Hippocampus of Mice. *Sleep.* 2015;38(10):1537-1546. doi: 10.5665/sleep.5042
5. Sekhon MS, Stukas S, Hirsch-Reinshagen V, et al. Neuroinflammation and the immune system in hypoxic ischaemic brain injury pathophysiology after cardiac arrest. *J Physiol.* 2024;602(21):5731-1744. doi: 10.1113/JP284588
6. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. *Lancet Neurol.* 2019;18(11):1058-1066. doi: 10.1016/S1474-4422(19)30078-X
7. Uyar B, Palmer D, Kowald A, et al. Single-cell analyses of aging, inflammation and senescence. *Ageing Res Rev.* 2020;64:101156. doi: 10.1016/j.arr.2020.101156
8. Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME. The interplay between immunosenescence and age-related diseases. *Semin Immunopathol.* 2020;42:545-557. doi: 10.1007/s00281-020-00806-z
9. Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory Mechanisms in Ischemic Stroke: Focus on Cardioembolic Stroke, Background, and Therapeutic Approaches. *Int J Mol Sci.* 2020;21(18):6454. doi: 10.3390/ijms21186454
10. Zhu H, Hu S, Li Y, et al. Interleukins and Ischemic Stroke. *Front Immunol.* 2022;13:828447. doi: 10.3389/fimmu.2022.828447
11. Sarafanyuk N, Klymenko M. Production of interleukins 1 β , 2, 4, 10 and C-reactive protein in ischemic stroke. *Wiad Lek.* 2022;75(3):598-604. doi: 10.36740/WLek202203106
12. Neurology [Text] : Textbook / Ed. by SM Vynychuk. Kyiv : Zdorov'ya, 2008. P. 237-239 (in Ukrainian).
13. McCabe JJ, Walsh C, Gorey S, et al. C-Reactive Protein, Interleukin-6, and Vascular Recurrence After Stroke: An Individual Participant Data Meta-Analysis. *Stroke.* 2023;54(5):1289-1299. doi: 10.1161/STROKEAHA.122.040529
14. Burchinsky SG. Combined neuroprotection in chronic brain ischemia: goals, problems, instruments. *Int Neurol J.* 2020;16(3). doi: 10.22141/2224-0713.16.3.2020.203449 (in Ukrainian).
15. Tayebati SK, Martinelli I, Moruzzi M, Amenta F, Tomassoni D. Choline and Choline alphoscerate Do Not Modulate Inflammatory Processes in the Rat Brain. *Nutrients.* 2017;9(10):1084. doi: 10.3390/nu9101084.

Надійшла до редакція 07.07.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування mklymen@gmail.com

I. M. Samarskyi^{1,2} <https://orcid.org/0009-0004-2909-8520>

M. A. Kashtalian² <https://orcid.org/0009-0009-6205-4403>

V. O. Tsepkoletko³ <https://orcid.org/0000-0001-5885-6969>

D. M. Davydov² <https://orcid.org/0009-0000-3659-6764>

APPLICATION OF PERINEURAL ADMINISTRATION OF FIBROBLASTS AND PRP IN TOURNIQUET SYNDROME: A SURGEON'S PERSPECTIVE

¹Military Medical Clinical Center of the Southern Region, Odesa, Ukraine

²Odesa National Medical University, Odesa, Ukraine

³Plastic Surgery Institute "Virtus", Odesa, Ukraine

UDC 617.55-089.843-092:616.8-009.7-085.851

I. M. Samarskyi^{1,2}, M. A. Kashtalian², V. O. Tsepkoletko³, D. M. Davydov²

APPLICATION OF PERINEURAL ADMINISTRATION OF FIBROBLASTS AND PRP IN TOURNIQUET SYNDROME: A SURGEON'S PERSPECTIVE

¹Military Medical Clinical Center of the Southern Region, Odesa, Ukraine

²Odesa National Medical University, Odesa, Ukraine

³Plastic Surgery Institute "Virtus", Odesa, Ukraine

Introduction. Tourniquet syndrome causes compression-ischemic neuropathy and remains a significant challenge in combat-related limb injuries. Regenerative therapies using platelet-rich plasma (PRP) and fibroblasts may enhance neural recovery through trophic, angiogenic, and anti-inflammatory mechanisms.

Objective. To evaluate the clinical efficacy of perineural administration of PRP and autologous dermal fibroblasts in patients with tourniquet-induced neuropathy.

Materials and methods. A prospective study was conducted at the Military Medical Clinical Center of the Southern Region (Odesa, 2023–2024). Thirty-two patients with lower-limb injuries complicated by tourniquet application were examined. Group I (n = 17) received multimodal pharmacotherapy plus perineural PRP injections (3 sessions of 4 mL under ultrasound guidance) followed two weeks later by autologous fibroblast transplantation (30 million cells). Group II (n = 15) received pharmacotherapy only. Outcomes included pain intensity (VAS), motor and sensory function recovery, hospital stay duration, and complications.

Results. Group I demonstrated significantly faster reduction of neuropathic pain (VAS decreased from 8.9 to 3.6 at one month vs. 9.1 to 4.9 in controls, p < 0.05), earlier return of active distal motor function (10–14 days vs. > 4 weeks), and quicker recovery of tactile and pain sensitivity (7–10 days vs. approximately 4 weeks). Length of hospital stay was reduced by 10–17 days (35.8 ± 4.2 vs. 57.3 ± 5.1 days). Analgesic demand decreased by 50% after 2 weeks and by 75% at one month. No infectious complications occurred; local pain and transient edema were the most common mild adverse effects. No amputations were required.

Conclusions. Perineural PRP and fibroblast therapy accelerates functional recovery, decreases analgesic load, and shortens rehabilitation period in tourniquet neuropathy. The approach appears safe and feasible in military hospital practice but requires multicenter randomized trials to standardize dosing, timing, and protocols.

Keywords: military surgery, limb vasculature, tourniquet syndrome, regenerative medicine, rehabilitation.

УДК 617.55-089.843-092:616.8-009.7-085.851

I. M. Самарський^{1,2}, М. А. Каштальян², В. О. Цепколенко³, Д. М. Давидов²

ЗАСТОСУВАННЯ ПЕРИНЕВРАЛЬНОГО ВВЕДЕННЯ ФІБРОБЛАСТІВ І PRP ПРИ ТУРНІКЕТНОМУ СИНДРОМІ: ПОГЛЯД ХІРУРГА

¹Військово-медичний клінічний центр Південного регіону, Одеса, Україна

²Одеський національний медичний університет, Одеса, Україна

³ТОВ «Інститут пластичної хірургії Віртус», Одеса, Україна

У статті представлено клінічне дослідження ефективності периневрального введення збагаченої тромбоцитами плазми (PRP) та фібробластів у лікуванні компресійно-ішемічної нейропатії, спричиненої тривалим накладанням турнікета. PRP-терапія, яка використовує аутологічний концентрат тромбоцитів, показала здатність активізувати регенеративні процеси, зменшувати запалення та стимулювати ангіогенез і ремієлінізацію. Отримані результати засвідчили значно швидше зниження болювого синдрому, поліпшення моторної функції, відновлення чутливості та скорочення тривалості перебування в стаціонарі у пацієнтів першої групи. Також спостерігалося зменшення потреби в анальгетиках.

Автори підкреслюють необхідність подальших багатоцентрових досліджень для стандартизації протоколів застосування PRP у нейрореабілітації.

Ключові слова: військова хірургія, судини кінцівок, турнікетний синдром, регенеративна медицина, реабілітація.

© I. M. Samarskyi, M. A. Kashtalian et al., 2025

Стаття поширюється на умовах ліцензії

Introduction

Platelet-rich plasma (PRP) therapy is based on the use of an autologous patient-derived material – a concentrate of platelets rich in growth factors (PDGF, TGF- β , VEGF, etc.) that promote activation of tissue regeneration processes [1, 2]. In the context of neuropathy arising after prolonged compression of the neurovascular bundle by a tourniquet (particularly under extreme combat conditions) [3], PRP may stimulate the recovery of intra- and extraneuronal structures [1, 4]. Growth factors released by platelets enhance angiogenesis and myelination and activate macrophage-mediated clearance of damaged areas, thereby creating a favorable environment for axonal regrowth [4, 5].

Moreover, mechanical administration of PRP directly into the perineural zone provides a local concentration of regenerative signals and reduces local inflammation [5]. Experimental models of peripheral nerve injury demonstrate accelerated regeneration of damaged nerves and increased nerve conduction velocity compared with controls [6, 7]. It is also important to note that PRP therapy is highly compatible with other neurorehabilitation methods. The synergistic effect of a combined approach contributes to improved motor reinnervation and reduced neuropathic pain [8, 9].

In addition, current regenerative medicine protocols increasingly use combined therapy with autologous mesenchymal stromal/stem cells (MSCs) derived from bone marrow, adipose tissue, or peripheral blood. MSCs are capable of modulating immune responses, secreting numerous biologically active factors (including exosomes), stimulating endogenous tissue regeneration, and supporting anti-apoptotic processes within the injury zone [1–3].

Combination therapy with PRP + MSC enhances the efficiency of structural repair, prolongs the regenerative stimulus due to the sustained paracrine effect of MSCs, potentiates angiogenesis and neuroprotection, and reduces fibrotic changes. Such therapeutic strategies are being investigated in the context of treatment for neurodegenerative diseases (including ALS within clinical protocols), muscle atrophy, contractures, chronic pain, recovery after complex limb trauma, and in orthopedic and sports medicine [1, 2]. In neuropathy caused by prolonged (> 1.5 hours) tourniquet-induced compression of the neurovascular bundle (especially in combat settings) [3], PRP may stimulate recovery of intra- and extraneuronal structures [1, 4, 10]. Importantly, both PRP and MSC therapy integrate well with other neurorehabilitation modalities, with a synergistic effect contributing to improved motor reinnervation and reduction of neuropathic pain [11–14].

Aim of the study is to assess the effectiveness of fibroblast and PRP administration in patients with compression-ischemic neuropathy caused by prolonged tourniquet application to a limb (over 1.5 hours).

Materials and Methods

The study was conducted at the Military Medical Center of the Southern Region in 2023–2024. A total of 32 patients were examined. Group I consisted of 17 patients who, in addition to analgesic medications (pregabalin, carbamazepine, quetiapine, clomipramine, amitriptyline),

received perineural PRP injections under ultrasound guidance three times every two days, each injection consisting of 4 mL of concentrate over the course of one week, followed by perineural administration of fibroblast culture obtained from autologous skin (dose: 30 million) two weeks later. All injections were administered at the sites where tourniquets had been applied and under visual control.

Group II consisted of 15 patients who received only pharmacological therapy. The presence of neuropathy was confirmed clinically.

The mean age of the examined patients was 34.6 ± 1.2 years. The study included patients with lower-limb injuries: lower-leg injuries (64.7% in Group I and 60.0% in Group II), foot injuries (35.3% in Group I and 40.0% in Group II). In Group I, major vascular injury was present in 52.9%; in Group II, in 53.3% of the wounded (tibial vessels were ligated; popliteal artery injuries were reconstructed with an autogenous graft in 2 wounded patients in Group I and 1 patient in Group II). The average number of tourniquets applied was 1.4 ± 0.6 in both groups. Tourniquet application sites: upper third of the thigh – 23.5% in Group I and 20% in Group II; middle third of the thigh – 58.8% in Group I and 60.0% in Group II; lower third of the thigh – 17.6% in Group I and 20.0% in Group II. The duration of tourniquet application to the limb also did not differ: in Group I, the tourniquet remained on the limb for 1.5–2.5 hours in 9 (52.9%) patients; in Group II – in 8 (53.3%) patients; all other patients had a duration over 2.5 hours. All patients underwent staged surgical wound management as needed.

The main manifestations of tourniquet syndrome were: tissue edema (100.0%), sensory disturbances – pain (100.0%), numbness (93.7%), paresthesia (87.5%), tingling (78.1%), muscle weakness or paresis (71.9%), muscle rigidity and tenderness on palpation (56.2%), signs of reperfusion syndrome (46.9%) – weakness, tachycardia, acidosis, darkened urine. Fasciotomy was performed in 13 (76.4%) patients of Group I and 10 (66.7%) of Group II ($\chi^2 = 0.38$, $p > 0.05$).

Preparation of PRP and fibroblast cultures was performed according to standard protocols [14]. Perineural administration was carried out under ultrasonographic guidance. In ultrasound imaging of the sciatic nerve (*n. ischiadicus*) in areas designated for perineural injection, the nerve appears as an oval or triangular hyperechoic structure with a homogeneous internal granular pattern characteristic of fascicular organization, surrounded by a thin hypoechoic epineurium. In the transverse view, it appears as a “honeycomb-like” structure, whereas in the longitudinal view it presents as parallel echogenic lines corresponding to fascicles and connective-tissue septa. In the subgluteal region, the nerve is located beneath the gluteus maximus muscle, between the *m. gluteus maximus* and *m. quadratus femoris*, lateral to the ischial tuberosity and medial to the greater trochanter. In the mid-thigh, it is visualized beneath the *m. biceps femoris* and above the surface of the *m. adductor magnus* as a hyperechoic cord 5–7 mm in diameter, without intraneuronal blood flow on Doppler imaging, which allows clear differentiation from adjacent vascular structures.

During perineural injections, the needle is introduced in-plane with the ultrasound beam via a lateral or medial approach, with the needle tip positioned 1–2 mm from the epineurium. After the introduction of a small amount of fluid, uniform spread of the solution around the nerve is observed as a hypoechoic halo gradually separating the nerve from surrounding tissues. This pattern indicates correct perineural placement of the solution and confirms the absence of intraneuronal injection. The injection volume depends on the purpose of the procedure: 5–10 mL is typically used for diagnostic blocks, and up to 20 mL for complete sensory or therapeutic blocks.

After injection, displacement of the nerve is observed without deformation of its fascicular pattern, which is a safety criterion for the procedure. In contrast, intraneuronal injection is characterized by localized increased echogenicity and disruption of the fascicular structure, requiring immediate cessation of the procedure. Successful blockade is indicated by visualization of complete circumferential filling of the space around the nerve, whereas lack of uniform surrounding spread indicates inadequate needle positioning.

Ultrasound guidance for perineural administration of pharmacological agents in the sciatic nerve region enables precise identification of anatomical variability, determination of nerve depth, and avoidance of injury to adjacent vessels. This is particularly important when applying neuroprotective therapy, PRP, or regenerative injections in the treatment of neuropathies, neuropathic pain, or compression syndromes. Ultrasound guidance provides a high level of positioning accuracy (95–98%), reduces the risk of intraneuronal injury, and enables control of the actual volume and direction of active agent distribution.

The study was conducted in compliance with current bioethical standards [15]. All patients provided informed consent to participate. The study protocol was approved by the Local Ethics Committee of the Center for Reconstructive and Regenerative Medicine on 10 September 2023. Statistical analysis was performed using partial analysis methods with the χ^2 test [16].

Research results and their discussion

The mean duration of treatment in Group I was 35.8 ± 4.2 days, whereas in Group II it was 57.3 ± 5.1 days ($p < 0.05$).

Acute kidney injury that developed in 4 patients of Group I and 3 patients of Group II against the background of rhabdomyolysis was resolved in both groups after 3–5 dialysis sessions.

The intensity of pain syndrome in Group I was lower than in Group II (Table 1), with the greatest difference observed at later follow-up points.

The need for analgesic medication in patients of Group I was significantly lower. After 2 weeks, the doses were reduced by half, and after one month – by 75%, while in Group II the reduction in the need for neuropathic pain medications was minimal.

Perineural administration of fibroblasts and platelet-rich plasma (PRP) in compression-ischemic neuropathy caused by prolonged tourniquet application has several important advantages compared with traditional treatments. First, pain in the affected area decreases much faster – noticeable relief of neuropathic pain is observed within 5–7 days, whereas in standard therapy improvement occurs at 2–3 weeks. Muscle strength recovery was also faster: active movements in distal segments appeared at approximately 10–14 days, whereas with the conventional approach this required more than 4 weeks. Sensory recovery – including tactile and pain sensitivity – occurred on average within 7–10 days during PRP therapy, which is a substantially better outcome compared to the typical 4-week partial recovery under standard treatment. Static-dynamic functions (balance, coordination, weight-bearing) also improved earlier – usually by week 2–3, compared with week 4–6 under medication-only therapy. Due to this accelerated recovery, patients receiving bioactive therapy stayed in the hospital 10–17 days less on average compared with patients who did not receive bioactive treatment.

Among complications occurring during treatment with fibroblasts and PRP, the most common were local pain and discomfort at the injection site (82.4% of patients), which resolved within 30 minutes; tissue swelling and hyperemia (23.5% of patients); and shooting pain or paresthesia (11.8% of patients) in the nerve's innervation zone during the first 1–2 days after the procedure. No infectious complications were observed, which we attribute to strict adherence to aseptic protocols. In 2 patients, technical difficulties occurred due to soft-tissue damage in the injection area. In all cases, limb amputation was avoided.

Conclusions

Perineural administration of PRP and fibroblasts significantly reduces neuropathic pain manifestations in patients with tourniquet-induced neuropathy and decreases medication load by 25–75%.

It shortens treatment and rehabilitation duration by more than 10–14 days, reduces hospital stay, lowers the risk of disability, and facilitates faster return of wounded personnel to active duty.

The therapy is safe, well tolerated, and can be combined with other treatment methods, making it suitable for use in hospital settings and at the outpatient rehabilitation stage.

Despite encouraging preclinical results and early clinical case series, widespread implementation of PRP and MSC-based therapy for neuropathies caused by tourniquets

Pain intensity in clinical groups (VAS, points)

Group	Baseline	After 7 days	After 14 days	After one month
Group I (n = 17)	8.9 ± 0.2	6.5 ± 0.3	5.1 ± 0.2	3.6 ± 0.2
Group II (n = 15)	9.1 ± 0.3	6.9 ± 0.4	$5.8 \pm 0.3^*$	$4.9 \pm 0.4^*$

Note. * – differences between groups are statistically significant.

Table 1

or other injuries requires randomized multicenter studies to determine optimal concentrations of active components, injection frequency, and timing in both acute and chronic phases of injury. This will allow the development of standardized protocols ensuring maximal benefit for patients within comprehensive neurorehabilitation.

BIBLIOGRAPHY

1. Sheean AJ, Anz AW, Bradley JP. Platelet-rich plasma: fundamentals and clinical applications. *Arthroscopy*. 2021 Sep;37(9):2732-4. doi:10.1016/j.arthro.2021.07.003. PMID:34481615.
2. Goshchynsky VB, Migenko BO, Svidersky UU. Zastosuvannia PRP ta PRF tekhnolohii u pidhotovtsi do vykonannia radiochastotnoi abliatsii ven u khvorykh na varykoznu khvorobu nyzhnikh kintsovok, uskladnenu trofichnoiu vyrazkoiu [Application of PRP and PRF technologies in the preparation for radiofrequency ablation of veins in patients with varicose disease of the lower extremities complicated by trophic ulcer]. *Zdobutky klinichnoi i eksperimentalnoi medytsyny*. 2019;(2):99-104. doi:10.11603/1811-2471.2019.v0.i2.10376.
3. Samarskiy IM, Khoroshun EM, Vorokhta Y. The use of tourniquets in the Russo-Ukrainian war. *J Spec Oper Med*. 2024 Mar 13. doi:10.55460/CB00-GYYX. Epub ahead of print. PMID:38408044.
4. Schwab ME, Strittmatter SM. Nogo limits neural plasticity and recovery from injury. *Curr Opin Neurobiol*. 2014 Aug;27:53-60. doi:10.1016/j.conb.2014.02.011. PMID:24632308; PMCID:PMC4122629.
5. Öztürk GT, Erden E, Erden E, Ulaşlı AM. Effects of ultrasound-guided platelet rich plasma injection in patients with piriformis syndrome. *J Back Musculoskelet Rehabil*. 2022;35(3):633-9. doi:10.3233/BMR-210032. PMID:34397402.
6. Yang Z, Hou N, Cheng W, et al. MiR-378 exaggerates angiogenesis and bone erosion in collagen-induced arthritis mice by regulating endoplasmic reticulum stress. *Cell Death Dis*. 2024 Dec 18;15(12):910. doi:10.1038/s41419-024-07193-5. PMID:39695085; PMCID:PMC11655635.
7. Zavala A, Martinez PC, Gutierrez GG, Vara MD, Pawlikowski W. The combined use of curcumin and platelet-rich plasma enhances axonal regeneration in acute nerve injuries: an experimental study in a rat model. *J Hand Microsurg*. 2020 Nov 23;15(1):31-6. doi:10.1055/s-0040-1721562. PMID:36761053; PMCID:PMC9904982.
8. Odložilová Š, Paral J, Sirovy M, Zajak J, Fibír A. Platelet-rich plasma: characteristics and current review of its use in surgery. *Pol Przegl Chir*. 2024 Jul 9;96(5):66-74. doi:10.5604/01.3001.0054.6750. PMID:39465631.
9. Means GE, Muench P. Platelet-rich plasma injections for the treatment of degenerative orthopedic conditions. *Mil Med*. 2024 Jul 3;189(7-8):207-8. doi:10.1093/milmed/usae025. PMID:38349194.
10. Xu PC, Xuan M, Cheng B. Effects and mechanism of platelet-rich plasma on military drill injury: a review. *Mil Med Res*. 2020;7:56. doi:10.1186/s40779-020-00285-1.
11. Badyin I, Khramtsov D, Vorokhta Y. The use of platelet-rich plasma in the treatment of patients with chronic dorsalgia. *Int Neurol J*. 2024;20(5):217-20. doi:10.22141/2224-0713.20.5.2024.1088.
12. Castle CD, Dunderdale CM, Patzkowski JC, Carius BM. Platelet-rich plasma improves strength and speed of recovery in an active-duty soldier with isolated injury to the lateral collateral ligament of the knee: a case report. *Med J (Ft Sam Houst Tex)*. 2023 Apr-Jun;(Per 23-4/5/6):17-9. PMID:37042501.
13. Wang SL, Liu XL, Kang ZC, Wang YS. Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury. *Neural Regen Res*. 2023 Feb;18(2):375-81. doi:10.4103/1673-5374.346461. PMID:35900433; PMCID:PMC9396478.
14. Preston DC, Shapiro BE. Electromyography and neuromuscular disorders: clinical-electrophysiologic-ultrasound correlations. 4th ed. Philadelphia: Elsevier; 2020. ISBN:9780323661805.
15. Tereshkevych H. T. Osnovy bioetyky i biobezpeky [Fundamentals of Bioethics and Biosafety]. Lviv: Vyd-vo Lviv. un-tu, 2018. 400 p.
16. Fetisov V. S. Paket statystychnoho analizu danykh STATISTICA [Package of Statistical Data Analysis STATISTICA]. Nizhyn, 2018. 114 p.

Надійшла до редакція 14.09.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування samarskiyigor2702@gmail.com

N. M. Rozhkovska <https://orcid.org/0000-0001-7860-3272>

S. H. Chetverikov <https://orcid.org/0000-0001-6280-8054>

M. S. Chetverikov <https://orcid.org/0000-0001-7255-9733>

V. V. Chetverikova-Ovchynnyk <https://orcid.org/0000-0001-9025-9320>

CHANGES OF PROTEIN EXPRESSION OF PLATINUM RESISTANCE INDICATORS UNDER THE INFLUENCE OF HYPERTERMIA DURING THE HIPEC PROCEDURE IN RECURRENT OVARIAN CANCER

Odesa National Medical University, Odesa, Ukraine

UDC 616-006

N. M. Rozhkovska, S. H. Chetverikov, M. S. Chetverikov, V. V. Chetverikova-Ovchynnyk

CHANGES OF PROTEIN EXPRESSION OF PLATINUM RESISTANCE INDICATORS UNDER THE INFLUENCE OF HYPERTERMIA DURING THE HIPEC PROCEDURE IN RECURRENT OVARIAN CANCER

Odesa National Medical University, Odesa, Ukraine

Introduction. Ovarian cancer relapse and death are usually caused by acquired drug resistance. The mechanisms of platinum resistance are multifactorial. Excision repair cross-complementation group 1 (ERCC1) is a protein critical in removing platinum-induced DNA lesions. Microsatellite Instability (MSI) is present in a substantial proportion of ovarian cancers but knowledge about its clinical value is limited. Hyperthermia, one more promising treatment agent, delays the repair of DNA damage. Hyperthermic intraperitoneal chemoperfusion (HIPEC), which has been actively studied in recent years as a possible addition to therapy for advanced stages of epithelial ovarian cancer.

Material and methods. The study was retrospective, it included a total of 16 patients with stage IIIC epithelial ovarian cancer. For various reasons, these patients underwent suboptimal cytoreductive surgery with HIPEC + Second-look surgery with complete / optimal cytoreduction (6 patients) or relaparotomy with biopsy of residual disease due to surgical complications in 2–4 weeks interval. Immunohistochemical investigation of ERCC1 and MLH-1 expression were performed for the histological samples obtained from pre- and post HIPEC metastatic tumor tissue on the first and second surgical interventions.

Conclusions. DNA repair pathways are one of the most important factors of platinum drug resistance formation. Hyperthermia during HIPEC procedure leads to decrease in the efficiency of DNA repair pathways by reducing the expression of ERCC1 and MMR proteins. These changes may determine the proven effectiveness of HIPEC procedure with cytoreduction after NACT (which may lead to secondary platinum drug resistance formation) by overcoming platinum resistance.

Keywords: recurrent ovarian cancer, platinum resistance, HIPEC, ERCC1, MLH-1.

УДК 616-006

Н. М. Рожковська, С. Г. Четверіков, М. С. Четверіков, В. В. Четверікова-Овчинник

ЗМІНИ ЕКСПРЕСІЇ БІЛКОВИХ МАРКЕРІВ РЕЗИСТЕНТНОСТІ ДО ПРЕПАРАТІВ ПЛАТИНИ ПІД ВПЛИВОМ ГІПЕРТЕРМІЇ ПІД ЧАС ПРОЦЕДУРИ НІРЕС ПРИ РЕЦІДИВНОМУ РАКУ ЯЧНИКІВ

Одеський національний медичний університет, Одеса, Україна

Рецидив раку яєчників і подальша смерть зазвичай спричинені набутою медикаментозною резистентністю. Механізми резистентності до платини багатофакторні. Шляхи репарації ДНК є одним із найважливіших факторів формування стійкості до препаратів платини. Гіпертермія під час процедури НІРЕС призводить до зниження ефективності репарації ДНК шляхом зменшення експресії ERCC1 (з 57,56% клітин до 5% клітин – $p < 0,05$) та білків MLH-1 (з 9,11% клітин до 0% клітин – $p < 0,05$). Цей механізм подолання вторинної резистентності до препаратів платини обґрунтовує ефективність процедури НІРЕС з циторедукцією після неоад’ювантної хіміотерапії.

Ключові слова: рецидивний рак яєчників, резистентність до препаратів платини, HIPEC, ERCC1, MLH-1.

Introduction

Ovarian cancer is one of the most common malignant tumors of the reproductive organs and has the highest mortality rate among all gynecological malignancies. At diagnosis, approximately 3/4 of patients present with advanced disease resulting in a low five-year survival rate. The initial response to platinum-based chemotherapy is as high as 80%, but in most advanced patients, final relapse and death are caused by acquired drug resistance.

The mechanisms of platinum resistance are multifactorial and comprise genetic and epigenetic alterations as well as immune and environmental factors frequently involving more than one mechanism of resistance [1].

Deoxyribonucleic acid (DNA) is the main target of platinum-based anticancer drugs, and the cell's ability to recognize and repair drug-induced DNA damage can influence its sensitivity or resistance to platinum chemotherapy. The primary mechanism through which platinum chemotherapy exerts its cytotoxic effects is the formation of DNA monoadducts that evolve through covalent binding to DNA crosslinks that can occur either on the same DNA strand or on the opposite strands, generating interstrand crosslinks that block DNA synthesis and

transcription if they are not repaired. DNA damage response consists of several signaling pathways responsible for enforcing cell-cycle arrest and, depending on the severity of DNA damage, either DNA repair or the activation of apoptosis for cells presenting with unrepairable DNA lesions. Six major DNA repair pathways have been described: mismatch repair (MMR), base excision repair, nucleotide excision repair (NER), homologous recombination, nonhomologous end joining, and Fanconi anemia [2].

Excision repair cross-complementation group 1 (ERCC1) is a protein critical in a nucleotide excision repair pathway. The key role of NER in removing platinum-induced DNA lesions has been suggested by the extreme sensitivity of cells lacking functional ERCC1. It was shown that neoadjuvant chemotherapy (NACT) treated epithelial ovarian cancer (EOC) tissues showed a two-fold increase in ERCC1 expression compared to chemo-native epithelial ovarian cancer tissues. This is why ERCC1 has been the most investigated potential biomarker of therapeutic response at the genomic level (analysis of single-nucleotide polymorphisms), at the transcriptional level (reverse transcriptase PCR) and at the protein level (immunohistochemistry – IHC) in different tumor types, in retrospective and prospective studies. However, the results obtained by some researchers have been contradictory [3–5].

Microsatellite Instability (MSI) is present in a substantial proportion of endometrioid ovarian cancers but can also occur in other tumor subtypes. MMR deficiency/MSI typically involves the entire tumor mass, suggesting that MMR inactivation occurs early in tumorigenesis in a subset of ovarian cancers [6]. Investigating for mismatch repair protein deficiency, microsatellite instability, and Lynch syndrome is widely accepted in endometrial cancer, but knowledge is limited on its value in epithelial ovarian cancer [7]. In ovarian cancer, data on intratumoral heterogeneity of MMR deficiency/MSI are lacking. From 7% to 16% of OCs are MMRd by IHC or MSI, respectively, although studies where both techniques are used do not suggest that one technique is superior. This is clinically significant as these cancers would potentially be amenable to immunotherapy; a treatment that has been shown to be highly effective in solid cancers with MMRd [8].

Interval debulking surgery (IDS) is an option for treating patients with advanced ovarian carcinoma. Randomized trials have shown similar survival rates for primary debulking surgery (PDS) and IDS. NACT followed by IDS could improve the optimal debulking rate and decrease the postoperative adverse reactions. The question of whether overall survival and progression-free survival are improved compared with PDS followed by chemotherapy in patients with FIGO stages IIIc and IV ovarian carcinoma requires further research. One of the concerns with IDS is the potentially higher risk of inducing platinum resistance when treating patients with greater disease volume [9–11].

Hyperthermia, one more promising treatment agent, delays the repair of DNA damage caused by cisplatin or doxorubicin, acting upstream of different repair pathways to block histone polyADP-ribosylation, a known effect of chemotherapy [12]. Furthermore, hyperthermia blocks this histone modification as efficiently as pharmacologic inhibitors of PARP (PARPi), producing comparable delay

in DNA repair, induction of double-strand breaks, and cell cytotoxicity after chemotherapy. Mild hyperthermia (41°C–42.5°C) induces degradation of BRCA2 and inhibits homologous recombination. It is demonstrated that hyperthermia can be used to sensitize innately homologous recombination-proficient tumor cells to PARP-1 inhibitors and that this effect can be enhanced by heat shock protein inhibition [13, 14].

Hyperthermic intraperitoneal chemoperfusion (HIPEC), which has been actively studied in recent years as a possible addition to therapy for advanced stages of epithelial ovarian cancer locally spread by the peritoneal cavity. We need to focus on the M06OVH-OVHIPEC phase 3 trial, which examines the combination of interval cytoreduction and HIPEC. This is the only randomized and controlled study to date that has reliably proven the effectiveness of this method [15].

Aim of the study. To investigate changes in immunohistochemical markers of platinum resistance ERCC1 and MLH-1 under the influence of hyperthermia during the HIPEC procedure in epithelial ovarian cancer.

Materials and Methods

The study was retrospective, including a total of 16 patients with stage IIIC epithelial ovarian cancer who were treated in 2016–2018 at the Center for Reconstructive and Renovative Medicine (University Clinic) of Odesa National Medical University. All patients in the neoadjuvant regimen received 3 courses of chemotherapy according to the scheme Carboplatin (AUC 5-6) and Paclitaxel 175 mg/m² in a three-week regimen. They have obtained CC 1-2 (suboptimal) cytoreductive surgery with HIPEC + Second-look surgery with CC 0-1 (complete – optimal) cytoreduction (6 patients) or relaparotomy with biopsy of residual disease due to surgical complications (anastomosis leakage in 2 patients, early adhesive intestinal obstruction – 6 patients, eventeration – 1 patient, Bowel perforation (acute ulcer) – 1 patient) at an interval of 2–4 weeks. The HIPEC procedure was performed on the Rand Performer HT device (Italy) using cisplatin 50 mg/m² of body surface area and doxorubicin 15 mg/m² of body surface area. Immunohistochemical studies were performed on the basis of the pathomorphological laboratory of the University Clinic of Odesa National Medical University and the laboratory “CSDHealthCare” (Kyiv). IHC-study of ERCC1 expression using monoclonal antibodies against human ERCC1 clone 4F9 (DAKO, Denmark) was performed for histological samples obtained from metastatic tumor tissue before and after HIPEC during the first and second surgical interventions. IHC-study of MLH-1 obtained using monoclonal antibodies MLH-1 (DAKO Clone ES05) was performed for histological samples obtained from metastatic tumor tissue before and after HIPEC during the first and second surgical interventions. Morphometric counting of the percentage of positive tumor cells was performed using the JMicronVision 1.2.7 computer software. Student's t-test for matched samples was used to compare the results. All patients provided written informed voluntary consent for medical care, as well as for participation in the research and educational process. The study was conducted in compliance with the principles of the World Medical

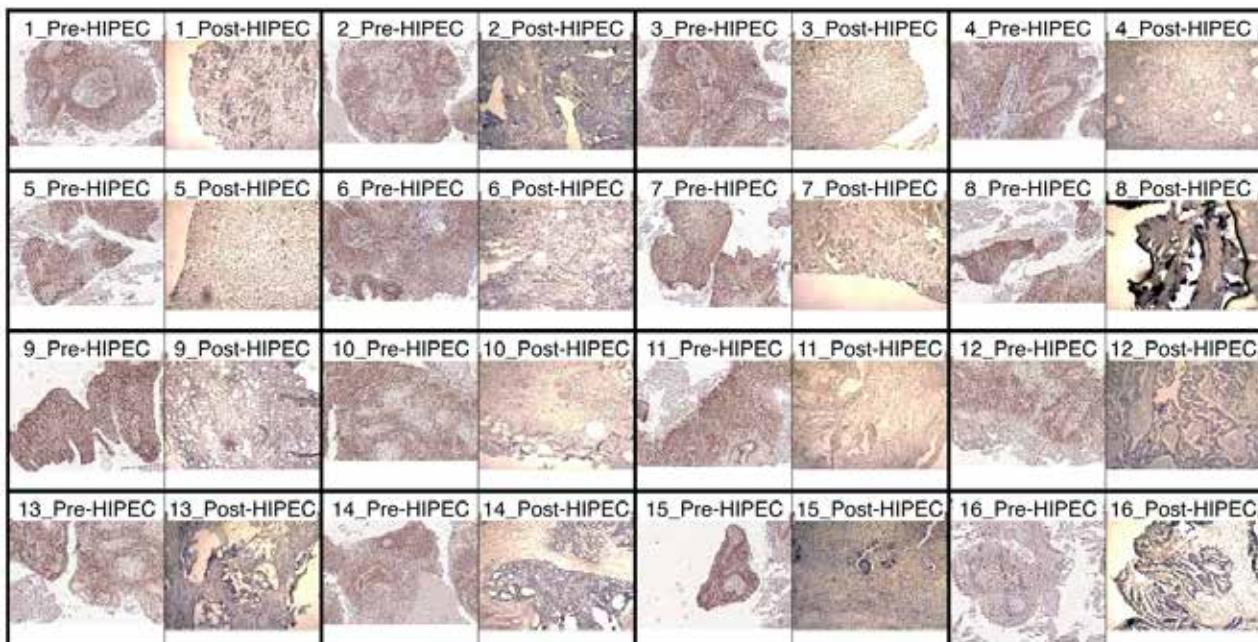
Association Code of Ethics for Research (Declaration of Helsinki "Ethical principles of medical research involving humans as research subjects" Adopted by the 18th General Assembly of the World Medical Association, Helsinki, Finland, June 1964, and revised by the 59th General Assembly of the World Medical Association, Seoul, October 2008 protocol N990_005) – Meeting protocol of the Bioethics Commission of Odesa National Medical University No. 06 dated October 14, 2022.

Research results and their discussion

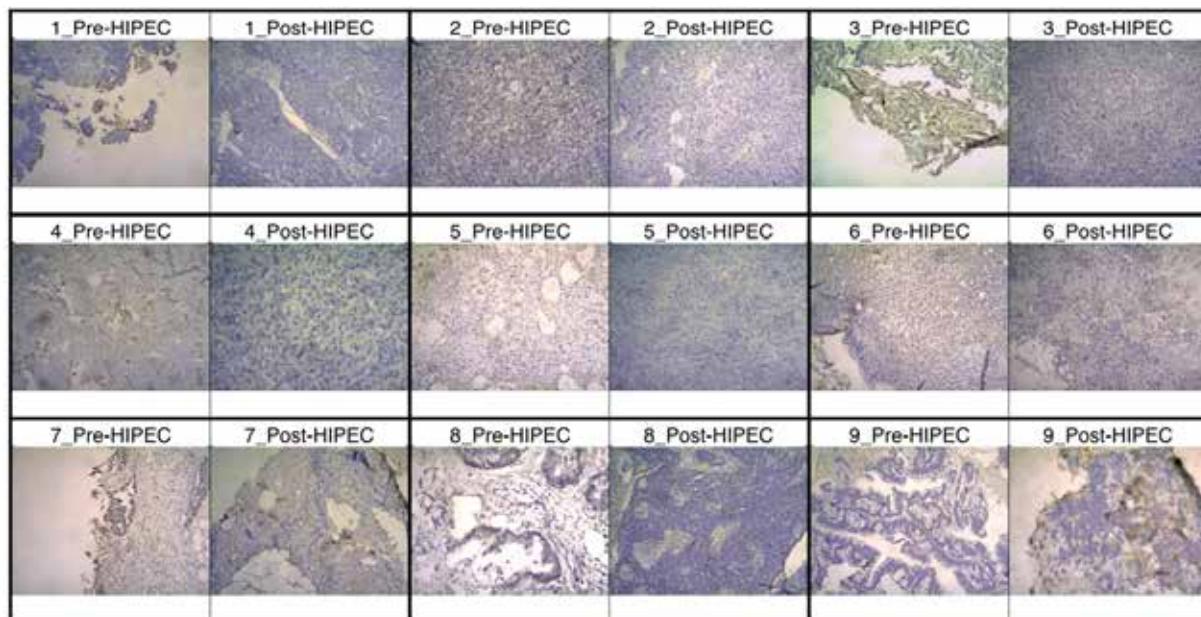
The mean age of patients was 54.4 ± 10.2 years. All 16 patients demonstrated high baseline ERCC1 expression ($> 50\%$ of tumor cells). We then selected 9 of these patients with Pre-HIPEC IHC expression of MLH-1 $> 5\%$ of cells and compare it with the Post-HIPEC results.

Median Pre-Hipec expression of ERCC1 was 57,56% of cells. Median Post-Hipec expression of ERCC1 was 5% of cells (Fig. 1). Student's t-test for matched samples was used to compare the results. Empirical t-value was 22.3, critical for $p \leq 0.05 - 2.13$, for $p \leq 0.01 - 2.95$. The obtained reduction of ERCC1 expression in cells of metastatic nodes of epithelial ovarian cancer is statistically reliable ($p < 0.05$).

Median Pre-Hipec expression of MLH-1 was 9,11% of cells. Median Post-Hipec expression of MLH-1 was 0% of cells (Fig. 2). Student's t-test for matched samples was used to compare the results. Empirical t-value was 5.3, critical for $p \leq 0.05 - 2.31$, for $p \leq 0.01 - 2.36$. The obtained reduction of MLH-1 expression in cells of metastatic nodes of epithelial ovarian cancer is statistically reliable ($p < 0.05$).


Surgical interventions in the study patients were performed before there were available clinical trials and treatment protocols that demonstrated benefits in overall

and disease-free survival for patients who underwent HIPEC with complete cytoreduction only. Nevertheless, this retrospective analysis provides valuable observations. Currently, there are only a few studies on biomarkers of chemotherapy resistance and their impact on the effectiveness of HIPEC or, conversely, the impact of the HIPEC procedure on biomarkers of chemotherapy resistance in the treatment of ovarian cancer. But there are some studies on this topic regarding colorectal cancer which we can compare with.


For example the obtained results are similar to a systematic review by Emma C. Hulshof et al. investigating the association between genetic biomarkers related to DNA repair and treatment outcome in patients with colorectal cancer undergoing systemic chemotherapy, because only two studies could be retrieved that investigated the association of biomarkers related to DNA repair and intraperitoneally administered mitomycin C or oxaliplatin. The most promising genetic biomarkers were *ERCC1* rs11615, *XPC* rs1043953, *XPD* rs13181, *XPG* rs17655, *MNAT* rs3783819/rs973063/rs4151330, MMR status, ATM protein expression, *HIC1* tandem repeat D17S5 and *PIN1* rs2233678. Combination studies of two DNA repair genes have also been studied and showed significant associations with treatment outcome [16].

The similar data was reported by M. Tonello et al. They have concluded that for patients affected by primary metastatic colorectal cancer who are eligible for cytoreductive surgery, clinical and pathologic criteria need to be integrated with molecular features (KRAS/BRAF mutation). Micro-satellite status should be strongly considered because MSI confers a survival advantage over microsatellite stable, even for mutated patients [17].

Ahmed B. Hamed et al. [18] and D. Massalou [19] also have reported that patients with primary metastatic

Fig. 1. Paired immunohistochemical micrographs of ERCC1 expression in tumors of 16 patients during the first surgery with HIPEC and after repeated surgery, x10 magnification, obtained using monoclonal Anti-Human ERCC1 Clone 4F9 antibody

Fig. 2. Paired immunohistochemical micrographs of MLH-1 expression in tumors of 9 patients during the first surgery with HIPEC and after repeated surgery, x10 magnification, obtained using monoclonal MLH-1 Antibody Clone ES05

colorectal cancer and dMMR/MSI-H status have superior survival due to benefits of immune checkpoint-inhibitors in this subgroup.

Primary metastatic colorectal cancer with cytoreduction and HIPEC patients has a surprisingly high proportion of mutBRAF (24.7%) according to S.G. Larse et al. research. Survival was similar when comparing mutBRAF, mutKRAS and double wild-type cases, whereas a small subgroup with mutBRAF and MSI had better survival. Patients with mutBRAF tumours and limited peritoneal metastases should be considered for CRS-HIPEC [20].

Comparing these studies with those obtained by us on ovarian cancer patients, we can assume that the DNA repair biomarkers have the necessary role in its treatment result prediction in FIGO IIIC and IV stages EOC patients. The decreased IHC expression of ERCC1 and MMR proteins after the HIPEC procedure may lead to treatment benefits from platinum-based chemotherapy. Lower MMR proteins expression (dMMR) status after HIPEC procedure may also confer a therapeutic advantage from immune checkpoint inhibitors treatment in future researches on cytoreduction + HIPEC + chemotherapy + immunotherapy in EOC patients.

The limitation of this study is a small number of patients treated in a single institution and retrospective research.

A positive aspect of the study is the unique data that was obtained from the small group of patients with suboptimal cytoreduction and HIPEC in EOC which can be found in other institution's repositories from 2000–2015 years but can't be studied prospectively now due to proofed major overall survival and progression free survival benefits from complete cytoreduction (PDS or IDS).

Conclusions

Hyperthermia during HIPEC procedure leads to a decrease in the efficiency of DNA repair by reducing the expression of ERCC1 (from 57.56% of cells to 5% of cells – $p < 0.05$) and MLH-1 proteins (from 9.11% of cells to 0% of cells – $p < 0.05$). This mechanism of overcoming secondary platinum resistance supports the efficacy of the HIPEC procedure with cytoreduction after neoadjuvant chemotherapy.

Conflict of interest. The authors declare that there is no conflict of interest regarding the publication of this article.

The sponsor has not been specifically involved in the research.

All authors read and approved the final version of the manuscript.

The authors have nothing to disclose.

BIBLIOGRAPHY

1. Yang L, Xie HJ, Li YY, Wang X, Liu XX, Mai J. Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (Review). *Oncol Rep.* 2022 Apr;47(4):82. <https://doi.org/10.3892/or.2022.8293>.
2. Havasi A, Cainap SS, Havasi AT, Cainap C. Ovarian Cancer-Insights into Platinum Resistance and Overcoming It. *Medicina (Kaunas)*. 2023 Mar 10; 59(3):544. <https://doi.org/10.3390/medicina59030544>.
3. Atallah GA, Kampan NC, Chew KT, et al. Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers. *Int J Mol Sci.* 2023 Jan 19;24(3):1973. <https://doi.org/10.3390/ijms24031973>.
4. Guffanti F, Alvisi MF, Caiola E, et al. Impact of ERCC1, XPF and DNA Polymerase β Expression on Platinum Response in Patient-Derived Ovarian Cancer Xenografts. *Cancers (Basel)*. 2020 Aug 24;12(9):2398. <https://doi.org/10.3390/cancers12092398>. PMID: 32847049.

5. Liblab S, Vusuratana A, Areepium N. ERCC1, XRCC1, and GSTP1 Polymorphisms and Treatment Outcomes of Advanced Epithelial Ovarian Cancer Patients Treated with Platinum-based Chemotherapy. *Asian Pac J Cancer Prev.* 2020 Jul 1;21(7):1925-1929. <https://doi.org/10.31557/APJCP.2020.21.7.1925>. PMID: 32711417.
6. Fraune C, Rosebrock J, Simon R et al. High homogeneity of MMR deficiency in ovarian cancer. *Gynecol Oncol.* 2020 Mar; 156(3): 669-675. <https://doi.org/10.1016/j.ygyno.2019.12.031>.
7. Mitric C, Salman L, Abrahamyan L, et al. Mismatch-repair deficiency, microsatellite instability, and lynch syndrome in ovarian cancer: A systematic review and meta-analysis. *Gynecol Oncol.* 2023 Mar;170:133-142. <https://doi.org/10.1016/j.ygyno.2022.12.008>. Epub 2023 Jan 20. PMID: 36682091.
8. Atwal A, Snowsill T, Dandy MC, et al. The prevalence of mismatch repair deficiency in ovarian cancer: A systematic review and meta-analysis. *Int J Cancer.* 2022 Nov 1;151(9):1626-1639. <https://doi.org/10.1002/ijc.34165>. Epub 2022 Jul 6. PMID: 35792468; PMCID: PMC9539584.
9. da Costa A, Valadares CV, Baiocchi G, et al. Neoadjuvant Chemotherapy Followed by Interval Debulking Surgery and the Risk of Platinum Resistance in Epithelial Ovarian Cancer. *Ann Surg Oncol.* 22. 2015; 971-978. <https://doi.org/10.1245/s10434-015-4623-z>
10. Xiao Y, Xie S, Zhang N, et al. Platinum-Based Neoadjuvant Chemotherapy versus Primary Surgery in Ovarian Carcinoma International Federation of Gynecology and Obstetrics Stages IIIc and IV: A Systematic Review and Meta-Analysis. *Gynecol Obstet Invest.* 2018;83(3):209-219. <https://doi.org/10.1159/000485618>. Epub 2017 Dec 21. PMID: 29402804.
11. Marchocki Z, Tone A, Virtanen C, et al. Impact of neoadjuvant chemotherapy on somatic mutation status in high-grade serous ovarian carcinoma. *Journal of Ovarian Research.* 2022; 15(1): 50. <https://doi.org/10.1186/s13048-022-00983-5>
12. Krawczyk PM, Eppink B, Essers J, et al. Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. *Proc Natl Acad Sci USA.* 2011 Jun 14;108(24):9851-6. <https://doi.org/10.1073/pnas.1101053108>. Epub 2011 May 9. PMID: 21555554; PMCID: PMC3116433.
13. Batista TP, Dal Molin GZ. Can HIPEC be used against platinum-resistance and for inducing sensitivity to PARP inhibitors in ovarian cancer? *Cancer Drug Resist.* 2020 Jul 10;3(3):666-671. <https://doi.org/10.20517/cdr.2020.27>. PMID: 35582446; PMCID: PMC8992489.
14. Schaaf L, Schwab M, Ulmer C, et al. Hyperthermia Synergizes with Chemotherapy by Inhibiting PARP1-Dependent DNA Replication Arrest. *Cancer Res.* 2016 May 15;76(10):2868-75. <https://doi.org/10.1158/0008-5472.CAN-15-2908>. Epub 2016 Mar 24. PMID: 27013194.
15. van Driel WJ, Koole SN, Sikorska K, et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. *N Engl J Med.* 2018 Jan 18;378(3):230-240. <https://doi.org/10.1056/NEJMoa1708618>. PMID: 29342393.
16. Hulshof EC, Lim L, de Hingh IHJT, Gelderblom H, Guchelaar HJ, Deenen MJ. Genetic Variants in DNA Repair Pathways as Potential Biomarkers in Predicting Treatment Outcome of Intraperitoneal Chemotherapy in Patients With Colorectal Peritoneal Metastasis: A Systematic Review. *Front Pharmacol.* 2020 Oct 6;11:577968. <https://doi.org/10.3389/fphar.2020.577968>. PMID: 33117169; PMCID: PMC7575928.
17. Tonello M, Baratti D, Sammartino P, et al. Microsatellite and RAS/RAF Mutational Status as Prognostic Factors in Colorectal Peritoneal Metastases Treated with Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy (HIPEC). *Ann Surg Oncol.* 2022 Jun;29(6):3405-3417. <https://doi.org/10.1245/s10434-021-11045-3>.
18. Hamed AB, Shuai Y, Derby J et al. Impact of Primary Tumor Location and Genomic Alterations on Survival Following Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemoperfusion for Colorectal Peritoneal Metastases. *Ann Surg Oncol.* 2023 Jul;30(7):4459-4470. <https://doi.org/10.1245/s10434-023-13463-x>. PMID: 37085655.
19. Massalou D, Benizri E, Chevallier A et al. Peritoneal carcinomatosis of colorectal cancer: novel clinical and molecular outcomes. *Am J Surg.* 2017 Feb;213(2):377-387. <https://doi.org/10.1016/j.amjsurg.2016.03.008>. Epub 2016 Aug 5. PMID: 27816197.
20. Larsen SG, Goscinski MA, Dueland S et al. Impact of KRAS, BRAF and microsatellite instability status after cytoreductive surgery and HIPEC in a national cohort of colorectal peritoneal metastasis patients. *Br J Cancer.* 2022 Mar;126(5):726-735. <https://doi.org/10.1038/s41416-021-01620-6>.

Надійшла до редакція 05.09.2025
Прийнята до друку 02.12.2025
Електронна адреса для листування chetvericov@yahoo.com

ОГЛЯД ЛІТЕРАТУРИ

UDC 616.1-057:616.329-002.2-085

DOI <https://doi.org/10.32782/2226-2008-2025-5-10>

L. I. Kolotvina <https://orcid.org/0000-0001-9660-3786>

G. V. Kornovan <https://orcid.org/0000-0002-9733-4482>

V. I. Synenko <https://orcid.org/0000-0003-0210-6776>

A. O. Kolotvin <https://orcid.org/0000-0001-6384-9667>

GASTROESOPHAGEAL REFLUX DISEASE AND CARDIOVASCULAR DISEASES: INTERRELATION AND MUTUAL INFLUENCE (LITERATURE REVIEW)

Odesa National Medical University, Odesa, Ukraine

UDC 616.1-057:616.329-002.2-085

L. I. Kolotvina, G. V. Kornovan, V. I. Synenko, A. O. Kolotvin

GASTROESOPHAGEAL REFLUX DISEASE AND CARDIOVASCULAR DISEASES: INTERRELATION AND MUTUAL INFLUENCE (LITERATURE REVIEW)

Odesa National Medical University, Odesa, Ukraine

Introduction. The work is dedicated to the problem of comorbidity with cardiovascular disease and gastroesophageal reflux disease.

Objective. Analyze the information in current literary and electronic resources regarding the clinical features of the current history of heart failure and illness of the cardiovascular system.

Materials and methods. An analysis of scientific information was carried out from the following databases: Scopus, Web of Science, MedLine, PubMed, Google Scholar, Global Health, ResearchGate, as well as WHO, Ministry of Health of Ukraine and other Internet resources.

Results. The work presents a review of the current scientific literature on the problem of interconnection and interrelation of the cardiovascular system and illness of the cardiovascular system. Some of the manifestations associated with reflux disease include transient disturbances in heart rhythm and conduction, usually supraventricular extrasystole and atrial fibrillation. Experts note that gastroesophageal reflux is a major trigger for arrhythmia. The problem of the connection between gastroesophageal reflux disease and ischemic heart disease is even relevant, which will require, in case of pain syndrome in the chest, to carry out detailed treatment of the patient to identify the pain, both on the side of the heart and on the side to the walker. It is also necessary to ensure the presence of causal links in the presence of gastroesophageal reflux disease and arterial hypertension.

Conclusion. Obvious comorbidity is associated with significant diagnostic difficulties and will require individual comprehensive treatment of such patients. The data expands the knowledge of the more common clinical features of esophagocardial interaction and is the basis for optimizing medical tactics for this category of patients.

Keywords: gastroesophageal reflux disease, atrial fibrillation, ischemic heart disease, arterial hypertension.

УДК 616.1-057: 616.329-002.2-085

Л. І. Колотвіна, Г. В. Корнован, В. І. Синенко, А. О. Колотвін

ГАСТРОЕЗОФАГЕАЛЬНА РЕФЛЮКСНА ХВОРОБА ТА ЗАХВОРЮВАННЯ СЕРЦЕВО-СУДИННОЇ СИСТЕМИ: ВЗАЄМОЗВ'ЯЗОК І ВЗАЄМОВПЛИВ (ОГЛЯД ЛІТЕРАТУРИ)

Одеський національний медичний університет, Одеса, Україна

Серед частих проявів, асоційованих із рефлюксною хворобою, є транзиторні порушення ритму серця та провідності. Експерти відмічають, що гастроезофагеальний рефлюкс виступає безпосереднім тригером виникнення аритмії. Проблема зв'язку ГЕРХ та ішемічної хвороби серця є дуже актуальною, що потребує за наявності бельового синдрому в грудній клітці проводити детальне обстеження хворого для виявлення джерела болю як з боку серця, так і з боку стравоходу. Потрібно також враховувати наявність причинно-наслідкових зв'язків за поєднання ГЕРХ та артеріальної гіпертензії. Наявна коморбідність пов'язана з певними діагностичними труднощами, потребує індивідуального комплексного обстеження таких пацієнтів.

Ключові слова: гастроезофагеальна рефлюксна хвороба, фібріляція передсердь, ішемічна хвороба серця, артеріальна гіпертензія.

Introduction

In recent years, the problem of comorbidity of diseases, namely the simultaneous coexistence of several pathologies in a single patient, has been increasingly discussed.

This condition is a significant factor that aggravates the overall health of the patient, complicates the diagnosis of each disease, increases the number and severity of complications, and affects the choice of therapeutic strategy [1]. Experts note that comorbidity is a global medical and socio-economic issue that significantly affects the life prognosis of each patient [2]. Today, in real clinical practice, there are very few patients suffering from a single

© L. I. Kolotvina, G. V. Kornovan et al., 2025

Стаття поширюється на умовах ліцензії

ОГЛЯД ЛІТЕРАТУРИ

disease, particularly in its classic course. It has been proven that comorbid conditions often worsen the course of the primary disease, contribute to its chronicity, and are a cause of disability and premature death [3]. This situation requires additional diagnostic and treatment approaches for this category of patients.

The cardiovascular system is one of the key systems in the human body, participating in the functioning of all organs and systems. Therefore, its condition should be especially considered in the context of comorbidity. The relationship and mutual influence between cardiovascular diseases and gastrointestinal tract disorders, particularly gastroesophageal reflux disease (GERD), have long been known. However, this issue remains relevant to practical medicine and requires further in-depth study.

Objective. To analyze information from modern literary and electronic resources regarding the clinical features of the combined course of gastroesophageal reflux disease and cardiovascular diseases.

Materials and Methods

A review of scientific information was conducted using databases such as Scopus, Web of Science, MedLine, PubMed, Google Scholar, Global Health, ResearchGate, as well as resources from WHO, the Ministry of Health of Ukraine, and other internet resources.

Research results and their discussion

One of the most common situations is the comorbidity of cardiovascular diseases and GERD, which affects, according to various authors, an average of 10% to 20% of the adult population in economically developed countries [4; 5]. Currently, there are isolated reports indicating that, based on surveys, the prevalence of GERD among adults in Ukraine averages 30%, whereas epidemiological data show a rate of 11.1% [6]. According to current concepts, this comorbidity is primarily due to shared risk factors, including unbalanced nutrition, smoking, a sedentary lifestyle, excess body weight, and visceral obesity, sleep disorders and the presence of obstructive sleep apnea syndrome [7; 8; 9]. Researchers have observed that patients with GERD and visceral obesity experience increased intra-abdominal pressure, heightened gastroesophageal gradient due to increased fat tissue volume, and elevated levels of the pro-inflammatory cytokine interleukin-6, along with decreased levels of the anti-inflammatory cytokine interleukin-10 [10]. It is now known that both diseases share common pathogenic mechanisms, including immune dysfunction [11], and general metabolic disorders [12; 13]. According to recent data, metabolic syndrome, one of the components of which is visceral obesity, the fat of which is metabolically active [14], is proposed to be considered as an inflammatory condition in which there is an increase in the levels of interleukin-1 β and interleukin-6, interleukin-8, tumor necrosis factor-alpha, and nuclear factor kappa- β , all of which can impair the function of the lower esophageal sphincter and exacerbate gastroesophageal reflux [15]. Studies show a significant link between obesity and the severity of symptoms, the rate of progression of GERD, and the development of complications, namely Barrett's esophagus, esophageal cancer [16; 17; 18].

Among the frequent manifestations associated with reflux disease are transient heart rhythm and conduction disorders, primarily supraventricular extrasystole and atrial fibrillation (AF) [9]. Heart rhythm is a crucial indicator reflecting changes in autonomic homeostasis, with disturbances often serving as an early prognostic sign of various diseases [19]. Over the past few decades, substantial evidence has accumulated linking GERD to an increased risk of developing AF [19]. Researchers emphasize that gastroesophageal reflux can act as a direct trigger for arrhythmias [20; 21]. Several pathophysiological mechanisms explaining this link have been identified. Specialists note that GERD can disrupt the balance between the sympathetic and parasympathetic divisions of the autonomic nervous system, with esophageal refluxate stimulating reflex zones in the distal esophagus, thereby creating an arrhythmogenic substrate for the onset and maintenance of AF [22; 23]. Many researchers consider excessive vagus nerve stimulation as one of the key triggers for supraventricular rhythm disturbances in GERD [22; 24; 25]. Other mechanisms of AF development in this comorbidity include local inflammation of the left atrial wall during reflux esophagitis [26] and mechanical irritation due to the anatomical proximity of the left atrium and esophagus [27]. Studies show that treating GERD with proton pump inhibitors (PPIs) in cases of paroxysmal AF reduces the frequency of paroxysms [25; 28]. Researchers believe that the mechanism of action of PPIs extends beyond their acid-suppressive effects [25; 28]. There is speculation that PPIs may influence ATP-dependent potassium channels in the heart [29], and their beneficial effect may also be attributed to their antioxidant and anti-inflammatory properties [28]. However, some studies demonstrate insufficient evidence of the effectiveness of PPIs in this comorbidity. For instance, research by Odashiro K. et al. reported a reduction in the severity and duration of AF symptoms but found no significant changes in the number of paroxysms [30], indicating the need for further investigation.

Diagnosis of chest pain is a crucial issue in esophago-cardiac interaction. Studies indicate that in 10–15% of GERD patients, chest discomfort is the sole manifestation of the disease [31]. The association between GERD and coronary heart disease (CHD) is increasingly being recognized. It is important to consider that esophageal disorders and coronary artery disease can coexist in the same patient, exacerbating each other's course. The presence of esophageal pathology does not rule out cardiovascular diseases, including CHD, in a patient. Therefore, detailed examinations are necessary to identify the source of chest pain, including potential esophageal origins. Research indicates that up to 40% of CHD patients have lesions in the gastroesophageal region, while 62.7% of patients with gastrointestinal disorders also have concomitant cardiovascular diseases, predominantly CHD [31]. Data from one analysis show that GERD can be considered as one of the risk factors for CHD [32]. Endothelial dysfunction is recognized as a crucial pathogenetic mechanism in the development of CHD. Data show that patients with both GERD and CHD exhibit elevated levels of endothelin-1, pro-inflammatory cytokines, and lipid peroxidation products, as well as decreased nitric oxide metabolites, contributing to the

progression of endothelial dysfunction [33]. These changes lead to microcirculatory disturbances in both the myocardium and the esophageal mucosa, resulting in decreased mucosal resistance and lower esophageal sphincter dysfunction [34; 35]. It is known that determining the coronary calcium index is one of the important non-invasive methods for diagnosing coronary atherosclerosis. A study spanning over 14 years demonstrated that patients with more severe GERD were significantly more likely to have higher coronary calcium index levels [35], emphasizing the need for a comprehensive examination of GERD patients with multiple risk factors. The comorbidity of CHD and GERD is characterized by mutual aggravation, alterations in clinical presentation, and atypical manifestations of both diseases [6]. Over recent decades, substantial evidence has accumulated confirming that reflux can trigger angina attacks. Researchers have noted that as the frequency of reflux episodes increases, the threshold for angina attacks decreases, the duration of ischemic episodes extends, and the frequency of pain-free ischemia episodes rises [36]. Studies indicate that irritation of the esophageal mucosa by refluxate can cause reflex coronary artery spasms, significantly impairing coronary blood flow [37]. At the same time, myocardial ischemia may worsen esophageal motility and increase the frequency of lower esophageal sphincter relaxation episodes, thereby promoting GERD progression [32]. Esophagocardiac monitoring of patients with combined CHD and GERD has revealed correlations between myocardial ischemic episodes on ECG, heartburn episodes, and pathological reflux with ST-segment depression [6]. Observations also show that in 30–40% of patients with retrosternal pain, coronary angiography reveals normal coronary arteries [31; 37]. It is important to emphasize that some studies indicate a significantly higher risk of developing gastroesophageal reflux in patients after myocardial infarction, acute cerebrovascular accident [38], at the same time, researchers note an increased relative risk of acute myocardial infarction in patients with GERD [39; 40], particularly in the 40–60 age group [41]. Naturally, the comorbidity of GERD and CHD is most common in elderly patients [6]. Data suggest that the frequency of hiatal hernia increases with age, contributing not only to the development and worsening of GERD but also potentially impairing coronary blood flow due to mechanical pressure on the left atrium [42].

One of the common clinical situations in everyday medical practice is the combination of GERD and arterial hypertension (AH). Recent studies confirm a causal relationship in this comorbidity [43]. Researchers emphasize that in patients with both AH and GERD, the clinical manifestations of the diseases change. Compared to isolated

AH, these patients report a greater number and variety of symptoms, such as dizziness, frequent palpitations, and heart irregularities, whereas symptoms like severe heartburn and epigastric pain are less common than in patients with isolated GERD [44]. In this comorbidity, especially in patients with visceral obesity, there is an increase in average daily systolic and diastolic blood pressure levels [44], predominantly at night, and greater variability in blood pressure throughout the day [45; 46]. However, some studies suggest that compared to isolated AH, the course of hypertension in combination with GERD may be more favorable [47]. For example, indicators of left ventricular hypertrophy were significantly higher in patients with isolated AH than in those with combined AH and GERD [45].

Recent years have seen increasing evidence of a causal link between acid reflux and a higher risk of cerebrovascular disorders [40; 48].

The problem of adequate and safe therapy for patients with esophagocardiac comorbidity is becoming particularly relevant. It should be taken into account that the use of nitrates, calcium antagonists, and beta-blockers for the treatment of cardiac pathology, may reduce lower esophageal sphincter tone and provoke pathological reflux, thereby worsening GERD symptoms [27; 33]. Additionally, the use of antithrombotic agents for secondary prevention can cause complications not only in the stomach and intestines but also in the esophagus [49]. The safety of prokinetic drugs is also a pressing issue. It is known that the use of prokinetic agents such as cisapride, domperidone, and tegaserod is associated with adverse cardiovascular safety profiles due to QT interval prolongation and drug-induced arrhythmias [50].

Conclusions

Based on the review of recent scientific publications, it can be concluded that in recent years, significant data have been accumulated on the relationship and mutual influence of GERD and cardiovascular diseases. These findings highlight the relevance and importance of this issue. The presence of comorbidity presents specific diagnostic challenges, requiring individualized and comprehensive examinations of such patients. It necessitates not only the assessment of the functional state of the cardiovascular system but also an evaluation of the esophageal mucosa, its motility, and the tone of the lower esophageal sphincter. These data enhance the understanding of clinical esophagocardiac interactions among family physicians, gastroenterologists, and cardiologists and serve as a foundation for optimizing treatment strategies for this patient category.

BIBLIOGRAPHY

- Chamberlain AM, Alonso A, Noseworthy PA, et al. Multimorbidity in patients with atrial fibrillation and community controls: A population-based study. *J Multimorb Comorb.* 2024 Dec 21; 14: 26335565241310281. DOI: 10.1177/26335565241310281.
- Tan MMC, Barbosa MG, Pinho PJMR, et al. Determinants of multimorbidity in low- and middle-income countries: A systematic review of longitudinal studies and discovery of evidence gaps. *Obes Rev.* 2023 Feb; 25(2): e13661. DOI: 10.1111/obr.13661.
- Abrahamovich O, Fayura O, Abrahamovich U. Komorbidnist: suchasnyy pohlyad na problemu; klasyfikatsiya (pershe povidomlennya). [Comorbidity: a Modern View on the Problem; Classification (first notice)]. *Lviv clinical bulletin.* 2015; 4(12): 56–64. <https://doi.org/10.25040/lkv2015.04.056>. (In Ukrainian).

ОГЛІЯД ЛІТЕРАТУРИ

4. Marabotto E, Pasta A, Calabrese F, et al. The Clinical Spectrum of Gastroesophageal Reflux Disease: Facts and Fictions. *Visc Med.* 2024 Oct; 40(5): 242–249. DOI: 10.1159/000536583.5.
5. Kashyrtseva OM, Novokhatnia A Ye, Khomenko LO, Oparin AA, Oparina TM. Endothelial dysfunction and gastroesophageal reflux disease: study of common pathogenetic mechanisms and ways of correction. *Clinical and preventive medicine.* 2024; 2: 75–82. <https://doi.org/10.31612/2616-4868.2.2024.10>. (In Ukrainian).
6. Prikhodko VYu, Moreva DYu. Peculiarities of gastroesophageal reflux disease in elderly people. *Problemy starinnia ta dovholtiia.* 2015; 24(1): 58–77. <http://old.geront.kiev.ua/library/psid/t24/n1/Prikhodko.pdf>. (In Ukrainian).
7. Fadieienko GD, Nesen AO, Krakhmalova OO, Izmailova OV. Mechanisms of formation of comorbidity of gastroesophageal reflux disease and coronary heart disease. *Modern Gastroenterology.* 2018; 3(101): 7–13. <https://doi.org/10.30978/MG-2018-3-7>. (In Ukrainian).
8. Gesualdo M, Scicchitano P, Carbonara S, et al. The association between cardiac and gastrointestinal disorders: causal or casual link? *J Cardiovasc Med (Hagerstown).* 2016 May; 17(5): 330–8. DOI: 10.2459/JCM.0000000000000351.
9. Liang J, Tang L, Yang J, Li Y, Yang X, Hou C. Gastroesophageal reflux disease and risk for arrhythmias: a Mendelian randomization analysis. *Front Cardiovasc Med.* 2024 Jul 29; 11: 1411784. DOI: 10.3389/fcvm.2024.1411784.
10. Stepanov YuM, Mosychuk LM, Tatarchuk OM, Shevtsova OM, Petishko OP. Vplyv vistseralnoho ozhyrinnya na tsytokinovu ta hormonalnu rehulyatsiyu u patsiyentiv iz hastroezofahealnoyu reflyuksnoyu khvoroboyu [Effects of visceral obesity on cytokine and hormonal regulation in patients with gastroesophageal reflux disease]. *Gastroenterologia.* 2023; 3(57): 19–24. <https://doi.org/10.22141/2308-2097.57.3.2023.551>. (In Ukrainian).
11. Lei WY, Wang JH, Wen SH, et al. Risk of acute myocardial infarction in patients with gastroesophageal reflux disease: A nationwide population-based study. *PLoS One.* 2017 Mar 20; 12(3): e0173899. DOI: 10.1371/journal.pone.0173899.
12. Eusebi LH, Ratnakumaran R, Yuan Y, Solaymani-Dodaran M, Bazzoli F, Ford AC. Global prevalence of, and risk factors for gastro-oesophageal reflux symptoms: a meta-analysis. *Gut.* 2018; 67(3): 430–440. DOI: 10.1136/gutjnl-2016-313589.
13. Saklayen MG. The Global Epidemic of the Metabolic Syndrome. *Curr Hypertens Rep.* 2018 Feb 26; 20(2): 12. DOI: 10.1007/s11906-018-0812-z.
14. Zhuravlyova LV, Filonenko MV. Gastroesophageal reflux disease in patients with metabolic syndrome: the peculiarities of clinical course and the modern approaches to treatment. *Modern Gastroenterology.* 2018; 4: 90–95. <https://doi.org/10.30978/MG-2018-3-90>. (In Ukrainian).
15. Loke SS, Yang KD, Chen JF. Erosive esophagitis associated with metabolic syndrome, impaired liver function, and dyslipidemia. *World J Gastroenterol.* 2013 Sep 21; 19(35): 5883–8. DOI: 10.3748/wjg.v19.i35.5883.
16. Bou Daher H, Sharara AI. Gastroesophageal reflux disease, obesity and laparoscopic sleeve gastrectomy: The burning questions. *World J Gastroenterol.* 2019 Sep 7; 25(33): 4805–4813. DOI: 10.3748/wjg.v25.i33.4805.
17. Nirwan JS, Hasan SS, Babar ZU, Conway BR, Ghori MU. Global Prevalence and Risk Factors of Gastroesophageal Reflux Disease (GORD): Systematic Review with Meta-analysis. *Sci Rep.* 2020; 10(1): 5814. DOI: 10.1038/s41598-020-62795.
18. Fu S, Xu M, Zhou H, Wang Y, Tan Y, Liu D. Metabolic syndrome is associated with higher rate of gastroesophageal reflux disease: a meta-analysis. *Neurogastroenterol Motil.* 2022 May; 34(5): e14234. DOI: 10.1111/nmo.14234.
19. Stepanov YuM, Zyhalo EV. Indices of heart rate variability for estimation of adaptive processes and stress resistance in gastroenterology practice (using up-to-date technology of precise-diagnosis). *Gastroenterologia.* 2020; 54(2): 113–123. DOI: 10.22141/2308-2097.54.1.2020.206230. (In Ukrainian).
20. Huang CC, Chan WL, Luo JC, et al. Gastroesophageal reflux disease and atrial fibrillation: a nationwide population-based study. *PLoS One.* 2012; 7(10): e47575. DOI: 10.1371/journal.pone.0047575.
21. Wang L, Lu YW. Gastroesophageal reflux disease may causally associate with the increased atrial fibrillation risk: evidence from two-sample Mendelian randomization analyses. *Front Cardiovasc Med.* 2024 Jun 3; 11: 1393383. DOI: 10.3389/fcvm.2024.1393383.
22. Harada M, Van Wagoner DR, Nattel S. Role of inflammation in atrial fibrillation pathophysiology and management. *Circ J.* 2015; 79(3): 495–502. DOI: 10.1253/circj.CJ-15-0138.
23. Floria M, Bărboi O, Grecu M, Cijevschi Prelipcean C, Balan G, Drug VL. Atrial fibrillation and sympathovagal balance in patients with gastroesophageal reflux disease. *Turk J Gastroenterol.* 2017 Mar; 28(2): 88–93. DOI: 10.5152/tjg.2017.16540.
24. Linz D, Hohl M, Vollmar J, Ukena C, Mahfoud F, Böhm M. Atrial fibrillation and gastroesophageal reflux disease: the cardiogastric interaction. *Europace.* 2017 Jan; 19(1): 16–20. DOI: 10.1093/europace/euw092.
25. Mohamed A, Ochoa Crespo D, Kaur G, et al. Gastroesophageal Reflux and Its Association with Atrial Fibrillation: A Traditional Review. *Cureus.* 2020, September 11; 12(9): e10387. DOI: 10.7759/cureus.10387.
26. Gutierrez A, Van Wagoner DR. Oxidant and Inflammatory Mechanisms and Targeted Therapy in Atrial Fibrillation: An Update. *J Cardiovasc Pharmacol.* 2015 Dec; 66(6): 523–9. DOI: 10.1097/FJC.0000000000000313.
27. Maruyama T, Fukata M, Akashi K. Association of atrial fibrillation and gastroesophageal reflux disease: Natural and therapeutic linkage of the two common diseases. *J Arrhythm.* 2018 Oct 12; 35(1): 43–51. DOI: 10.1002/joa3.12125.
28. Lin K, Chen X, Zhang L, Wang Y, Shan Z. Proton pump inhibitors as also inhibitors of atrial fibrillation. *Eur J Pharmacol.* 2013 Oct 15; 718(1–3): 435–40. DOI: 10.1016/j.ejphar.2013.07.043. Epub 2013 Aug 21. PMID: 23973848.
29. Jeremic N, Petkovic A, Srejovic I, Zivkovic V, Djuric D, Jakovljevic V. Effects of ischemia and omeprazole preconditioning on functional recovery of isolated rat heart. *Rev Bras Cir Cardiovasc.* 2015; 30: 266–275. DOI: 10.5935/1678-9741.20150020.
30. Odashiro K, Yokoyama T, Yoda S, et al. Prevalence of gastroesophageal reflux disorder in arrhythmic patients and adjunctive effects of proton pump inhibitors on comorbid atrial fibrillation. *Int. J. Basic Clin. Pharmacol.* 2015; 4: 644–650. <https://doi.org/10.18203/2319-2003.ijbcp20150365>.

31. Prikhodko VYu, Moreva DYu. Features of the course and treatment of hypertension in combination with chronicis chemic heart disease in patients with gastroesophagel reflux disease. *Famili medecine*. 2016; 1(63): 65–70. [https://doi.org/10.30841/2307-5112.1\(63\).2016.102165](https://doi.org/10.30841/2307-5112.1(63).2016.102165). (In Ukrainian).
32. Chen CH, Lin CL, Kao CH. Association between gastroesophageal reflux disease and coronary heart disease: A nationwide populationbased analysis. *Medicine (Baltimore)*. 2016; 95(27): e4089. DOI: 10.1097/MD.0000000000004089.
33. Jagirdhar GSK, Bains Y, Surani S. Investigating causal links between gastroesophageal reflux disease and essential hypertension. *World J Clin Cases*. 2024 May 16; 12(14): 2304–2307. DOI: 10.12998/wjcc.v12.i14.2304.
34. Oparin A, Vnukova A. The Role of Endothelial Dysfunction in the Mechanism of Gastroesophageal Reflux Disease Development in Patients with Ischemic Heart Disease. *Acta Clin Croat*. 2017 Dec; 56(4): 635–639. DOI: 10.20471/acc.2017.56.04.08.
35. Song JH, Kim YS, Choi SY, Yang SY. Association between gastroesophageal reflux disease and coronary atherosclerosis. *PLoS One*. 2022 May 20; 17(5): e0267053. DOI: 10.1371/journal.pone.0267053.
36. Liu Y, He S, Chen Y, et al. Acid reflux in patients with coronary artery disease and refractory chest pain. *Intern Med*. 2013; 52(11): 1165–71. DOI: 10.2169/internalmedicine.52.0031.
37. Kato H, Ishii T, Akimoto T, Urita Y, Sugimoto M. Prevalence of linked angina and gastroesophageal reflux disease in general practice. *World J Gastroenterol*. 2009 Apr 14; 15(14): 1764–8. DOI: 10.3748/wjg.15.1764.
38. Jansson C, Nordenstedt H, Wallander MA, et al. Severe symptoms of gastro-oesophageal reflux disease are associated with cardiovascular disease and other gastrointestinal symptoms, but not diabetes: a population-based study. *Aliment Pharmacol Ther*. 2008 Jan 1; 27(1): 58–65. DOI: 10.1111/j.1365-2036.2007.03537.x.
39. Wu Q, He C, Huang W, et al. Gastroesophageal reflux disease influences blood pressure components, lipid profile and cardiovascular diseases: Evidence from a Mendelian randomization study. *J Transl Int Med*. 2024 Nov 6; 12(5): 510–525. DOI: 10.1515/jtim-2024-0017.
40. Chen S, Chen Z, Jiang X, Lin C, Ji J. Modifiable risk factors mediate the effect of gastroesophageal reflux disease on stroke and subtypes: A Mendelian randomization study. *J Stroke Cerebrovasc Dis*. 2024 Apr; 33(4): 107612. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107612.
41. Johansson S, Wallander MA, Ruigómez A, García Rodríguez LA. Is there any association between myocardial infarction, gastroesophageal reflux disease and acidsuppressing drugs? *Aliment Pharmacol Ther*. 2003 Nov 15; 18(10): 973–8. DOI: 10.1046/j.1365-2036.2003.01798.
42. Carmona-Puerta R, Pérez-Sánchez D, Pichardo-Ureña JM, Rodríguez-Monteagudo JL, Lorenzo-Martínez E. The cardiovascular effects of large hiatal hernias: a narrative review of cases and studies. *Postgrad Med*. 2024 May; 136(4): 358–365. DOI: 10.1080/00325481.2024.2360886.
43. Wei N, Liu MH, Song YH. Causal associations between gastroesophageal reflux disease and essential hypertension: A bidirectional Mendelian randomization study. *World J Clin Cases*. 2024 Feb 16; 12(5): 880–890. DOI: 10.12998/wjcc.v12.i5.880.
44. Gridnyev AE. Comparative clinical and biochemical characteristics of hypertension and its comorbidity with gastroesophageal reflux disease. *Ukrainskyi terapevtychnyi zhurnal*. 2016; (2): 39–45. http://nbuv.gov.ua/UJRN/UTJ_2016_2_7. (In Russian).
45. Prikhodko VYu, Moreva DYu. Feauturies of the course and treatment of hypertension in combination with chronicis ischemic heart disease in patients with gastroesophagel refluxdisease. Role of proton pump inhibitors test in the diagnosis and treatment of different forms of GERD. *Famili medecine*. 2016; 4: 75–80. <https://family-medicine.com.ua/2412-8708/article/view/248527/249650>. (In Russian).
46. Li ZT, Ji F, Han XW, Wang L, Yue YQ, Wang ZG. The Role of Gastroesophageal Reflux in Provoking High Blood Pressure Episodes in Patients with Hypertension. *J Clin Gastroenterol*. 2018 Sep; 52(8): 685–690. DOI: 10.1097/MCG.0000000000000933.
47. Gridnyev AE. Features of the daily profile of arterial pressure and geometry of the left ventricle in patients with a combination of gastroesophageal reflux disease and hypertension. *Ukrainskyi terapevtychnyi zhurnal*. 2015; (4): 40–46. http://nbuv.gov.ua/UJRN/UTJ_2015_4_6. (In Russian).
48. Meng D, Zhang X, Yu W, et al. Association between gastroesophageal reflux disease and stroke: a bidirectional Mendelian randomization study. *Front Neurol*. 2024 Jan 23; 14: 1295051. DOI: 10.3389/fneur.2023.1295051.
49. Sohail R, Mathew M, Patel KK, et al. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. *Cureus*. 2023 Apr 3; 15(4): e37080. DOI: 10.7759/cureus.37080.
50. Giudicessi JR, Ackerman MJ, Camilleri M. Cardiovascular safety of prokinetic agents: A focus on drug-induced arrhythmias. *Neurogastroenterol Motil*. 2018 Jun; 30(6): e13302. DOI: 10.1111/nmo.13302.

Надійшла до редакція 25.05.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування larisa.kolotvina@ukr.net

ВИПАДОК ІЗ ЛІКАРСЬКОЇ ПРАКТИКИ

UDC 617.55-007.43

DOI <https://doi.org/10.32782/2226-2008-2025-5-11>

O. P. Laver¹ <https://orcid.org/0000-0002-6351-9913>

B. M. Patskan² <https://orcid.org/0000-0002-4077-0726>

A CASE REPORT: ABDOMINAL WALL RECONSTRUCTION FOR A THIRD-TIME RECURRENT GIANT VENTRAL HERNIA WITH LOSS OF DOMAIN

¹ State University “Uzhhorod National University”, Uzhhorod, Ukraine

² Uzhhorod City Multidisciplinary Clinical Hospital, Uzhhorod, Ukraine

UDC 617.55-007.43

O. P. Laver¹, B. M. Patskan²

A CASE REPORT: ABDOMINAL WALL RECONSTRUCTION FOR A THIRD-TIME RECURRENT GIANT VENTRAL HERNIA WITH LOSS OF DOMAIN

¹ State University “Uzhhorod National University”, Uzhhorod, Ukraine

² Uzhhorod City Multidisciplinary Clinical Hospital, Uzhhorod, Ukraine

Introduction. Giant ventral hernias with loss of domain (LoD) pose significant challenges in abdominal surgery due to irreducibility, scar tissue, and the risk of abdominal compartment syndrome. According to the European Hernia Society (EHS) giant hernias are defined as defects > 10 cm. Traditional hernioplasty methods without tissue preparation are associated with high recurrence rates (30–80%)

Aim. To present a case of successful abdominal wall reconstruction in a patient with a three-times recurrent giant ventral hernia with LoD using a combined approach involving botulinum toxin injections, progressive pneumoperitoneum, bone anchor fixation, two polypropylene meshes, and to evaluate the effectiveness of this method.

Materials and methods. The case involved a 69-year-old female patient with a giant third time recurrent ventral hernia with a defect size 30×35 cm classified as W3 M3 R with LoD. Methods included anamnesis history collection, physical examination, preoperative and 6-month postoperative CT control, intraoperative photo documentation. Preoperative preparation involved weight loss, lateral abdominal muscle relaxation with Dysport (botulinum toxin A) and progressive pneumoperitoneum. Intraoperative implantation of two Covidien Parietene 30×45 cm macroporous meshes and Smith & Nephew 4×8 mm titanium bone anchors. Procedures adhered to the ethical principles of the World Medical Association (Helsinki Declaration), with informed consent obtained.

Conclusions. The combined approach achieved stable abdominal wall reconstruction without recurrence over 6 months. Botox, pneumoperitoneum, TAR, and two mesh implants with bone anchors proved effective for complex hernias, though further studies are needed for long-term validation.

Keywords: ventral hernia, loss of domain, botulinum toxin, pneumoperitoneum, mesh implant.

УДК 617.55-007.43

О. П. Лавер¹, Б. М. Пацкань²

КЛІНІЧНИЙ ВИПАДОК: РЕКОНСТРУКЦІЯ ЧЕРЕВНОЇ СТІНКИ ПРИ ВТРЕТЄ РЕЦИДИВУЮЧІЙ ГІГАНТСЬКІЙ ВЕНТРАЛЬНІЙ КИЛІ З ВТРАТОЮ ДОМЕНУ

¹ Державний вищий навчальний заклад «Ужгородський національний університет», Ужгород, Україна

² Ужгородська міська багатопрофільна клінічна лікарня, Ужгород, Україна

Вступ. Гігантські вентральні киля з втратою домену (LoD) є складною проблемою абдомінальної хірургії з високим рівнем ускладнень і рецидивів у традиційній герніопластиці (30–80 %).

Мета – показати успішну реконструкцію черевної стінки у 69-річної пацієнтки з грижею з втретє рецидивуючою гігантською вентральною килою W3 M3 R з LoD із застосуванням ботулотоксіну, пневмoperitoneуму, кісткових анкерів та двох поліпропіленових сіток і сепарацією заднього компоненту, оцінити ефективність підходу.

Висновки. Комбінований підхід забезпечив стабільну реконструкцію черевної стінки. Ця методика виявилися ефективною, хоча для довгострокової перевірки потрібні подальші дослідження.

Ключові слова: вентральна кила, втрата домену, ботулотоксин, пневмoperitoneum, сітчастий імплант.

Introduction

Giant ventral hernias with loss of domain (LoD) represent a significant challenge in abdominal surgery

due to the extensive defect in the abdominal wall and the inability to reduce hernia contents without preparatory measures [1]. Repeated recurrences following surgical interventions complicate treatment due to scar tissue formation, adhesions, and the risk of abdominal compartment syndrome [2]. Traditional hernioplasty techniques using mesh without adequate tissue preparation

© O. P. Laver, B. M. Patskan, 2025

Стаття поширюється на умовах ліцензії

are associated with a high recurrence rate (30–80%) [3]. Developing combined approaches for stable reconstruction remains a pressing issue in modern surgery.

The aim of this study is to describe a clinical case of successful abdominal wall reconstruction in a patient with a third-time recurrent giant ventral hernia with LoD using a combination of botulinum toxin injections, progressive pneumoperitoneum, bone anchor fixation, and double-layered polypropylene mesh, and to evaluate the effectiveness of this approach.

Materials and Methods

The study material was a clinical case of a 69-year-old female patient with a giant thrice-recurrent postoperative ventral hernia classified as W3 M3 R according to the European Hernia Society [4], with Loss of Domain (LoD). Data collection included medical history, physical examination, preoperative and 6-month postoperative computed tomography (CT) imaging, and intraoperative photo documentation. Preoperative preparation involved relaxation of the lateral abdominal wall muscles using Dysport (botulinum toxin A) and progressive pneumoperitoneum. Intraoperative procedures included the placement of Covidien Parietene macroporous mesh implants (30×45 cm) and Smith & Nephew titanium bone anchors (4×8 mm).

All procedures were performed in accordance with the ethical principles of the World Medical Association (Helsinki Declaration), with informed consent obtained from the patient prior to treatment.

Clinical case

A 69-year-old patient complained of periodic cramping pain of varying intensity in the abdominal cavity, which worsened with habitual physical exertion and after eating, frequent episodes of vomiting, back pain that limited physical activity and the presence of a giant painful irreducible protrusion of the anterior abdominal wall.

Objectively: height 165 cm, weight 98 kg, BMI 36 kg/m² (Fig. 1). Presented with a giant irreducible

Fig 1. Preoperative Appearance of the Patient Before Weight Loss

recurrent incisional ventral hernia, which occupied most of the anterior abdominal wall.

Medical history: in 2004 – urgent surgery for rupture of an ovarian cyst, after which a ventral hernia developed. In 2007 – hernioplasty (recurrence after 1 year). In 2010 – second hernioplasty (recurrence after 6 months). In 2014 – third hernioplasty (recurrence on the first postoperative day). According to the patient, previous operations were performed using mesh implants. No medical documentation available.

A computed tomography scan was performed. According to the CT scan, the size of the hernial defect was 22×20 cm. The measurements of the defect were made from the most distant points of the defect in the longitudinal and transverse directions.

The patient was clinically diagnosed with a giant incisional recurrent ventral hernia of the white line W3 M3 R [4] according to the European Hernia Society classification with Loss of Domain.

The chosen tactic was hernioplasty with abdominal exploration, retromuscular hernioplasty with two polypropylene mesh implants using the posterior component separation transversus abdominis muscle release method and fixation of the implants with titanium anchor screws to the spina iliaca anterior superior, with combined preoperative preparation, which included the injection of botulinum toxin type A into the lateral muscles of the abdominal wall and progressive pneumoperitoneum with a gradual increase of intra-abdominal pressure and stretching of the abdominal wall muscles.

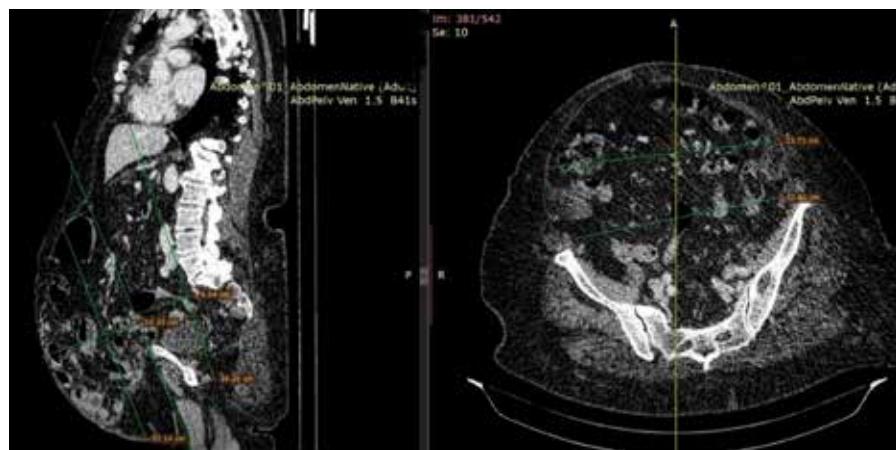
LoD was assessed using the Sabbagh and Tanaka indices [5, 6]. Measurements as shown on (Fig. 2):

- Wih (hernia sac width) = 23.7 cm, Hih (height) = 32.14 cm, Dih (depth) = 14.33 cm;
- Wac (abdominal cavity width) = 21.9 cm, Hac (height) = 38.29 cm, Dac (depth) = 8.64 cm.

$$Vh = \frac{Wih \times Hih \times Dih}{2} - \text{hernia sac volume}$$

$$Vac = Wac \times Hac \times Dac - \text{abdominal cavity volume}$$

$$LoD = \frac{Vh}{Vh + Vac} \times 100\%$$


2. Tanaka Formula:

$$LoD = \frac{Vh}{Vac}$$

Interpretation: According to Sabbagh, LoD = 42.96% indicates a significant loss of domain (>20%), which requires preparatory measures [5]. According to Tanaka, LoD = 0.75 also confirms a high degree of abdominal volume loss [6].

Preoperative Preparation

Over one month, the patient lost 5 kg (weight 93 kg, BMI 34.2 kg/m²) through diet and exercise. One month later, the first stage commenced with botulinum toxin administration. Under sedation, 300 units of botulinum toxin A (Dysport) dissolved in 200 mL of 0.9% NaCl was injected into the external oblique, internal oblique, and transversus abdominis muscles along the anterior axillary line at three points on each side of the trunk (approximately 11 ml for each injection) under ultrasound guidance, following the protocol by Ibarra-

Fig. 2. CT with Measurements of the Hernia Defect Before Preparation Calculation of Loss of Domain (LoD) Before Preparation

Hurtado [7]. The patient was discharged a few hours post-procedure.

After 28 days, when the botulinum toxin effect peaked (maximum effect at 3–4 weeks, as confirmed by Timmer et al. [8; 9]), progressive pneumoperitoneum was initiated. Under general anesthesia, a subclavian catheter was inserted at Palmer's point (2 cm below the left costal margin on the midclavicular line) into the abdominal cavity (Fig. 3) and 600 mL of free atmospheric air was insufflated in a single session per the protocol by Subirana et al. [10]. Daily insufflation of atmospheric air using a sterile Janet syringe continued until mild discomfort was reported, with total volume of 6000 mL of air insufflated at day 10, when further pneumoperitoneum became untolerable.

On day 10, a repeat CT was performed: (photo 4)

Wi_h = 20.83 cm, **Hih** = 32.06 cm, **Dih** = 16.78 cm;
Wac = 25.51 cm, **Hac** = 34.78 cm, **Dac** = 8.63 cm.

LoD After Preparation: According to Sabbagh and Tanaka, LoD was calculated as 42.66% and 0.74 respectively.

Interpretation and Comparison: According to Sabbagh, the percentage of LoD decreased from 42.96% to 42.66% by 0.3% is insignificant. According to Tanaka, the LoD decreased from 0.75 to 0.74 by 0.1, which is also insignificant in numerical terms. However, a comparative analysis of CT before preparation and after the introduction of botulinum toxin and progressive pneumoperitoneum visualized a qualitative change in the contents of the hernial sac, which consisted mainly of air, and most of the small intestine relocated back to the abdominal cavity (Fig. 4).

Surgical Intervention

The patient underwent surgery on day 10 of pneumoperitoneum. In the operating room, an anesthesiologist placed an epidural catheter for intraoperative and postoperative analgesia. Under general anesthesia, the surgical field was prepped with Cutasept solution three times and covered with an Ioban 3M antibacterial film. A midline incision was made from just below the xiphoid process to the suprapubic region, exposing the skin and subcutaneous

Fig. 3. Inserted catheter for progressive pneumoperitoneum

Fig. 4. CT After botulinum toxin injections and 10 days of progressive pneumoperitoneum

fat. A multicameral hernia sac was fully dissected from the subcutaneous tissue, with aponeurotic tissue of the hernia defect identified. After complete dissection final size of a hernia defect was measured as 30×35 cm (Fig. 5), which differs from the 22×20 cm measurements we got on the CT scan. Hernioplasty was performed, preserving the hernia sac and its attachments to the lateral edges of the hernia defect. The contents included viable but fibrotically altered small bowel loops with strangulation grooves from repeated incarcerations, areas of pathological dilatation and stenosis, and weak peristalsis. Several smaller hernia sacs were identified, with small bowel loops adhered to their bases. Fragments of mesh implants from prior surgeries, resembling onlay or inlay placement, were visualized within the disrupted aponeurotic tissue. An intense intra-abdominal adhesive process was noted. Adhesiolysis was performed. Approximately 50 cm of injured small bowel was resected, including a segment intimately fused with a previously placed mesh implant. An end-to-end entero-enteroanastomosis was

constructed 50 cm proximal to the ileocecal junction using double-row interrupted Vycril 3-0 sutures.

Retromuscular dissection of both rectus abdominis muscles was performed per the Rives-Stoppa technique, preserving the hernia sac tissue attachments to the posterior sheath of the right rectus abdominis and the anterior sheath of the left rectus abdominis. Bilateral posterior component separation with transversus abdominis release (TAR) was conducted by transecting the transversus abdominis muscle fibers at the linea semilunaris, as described by Novitsky [11].

Dissection extended from the subxiphoid space and diaphragm in both subcostal regions distally, with pretransverse dissection laterally to visualize the *m. iliopsoas* bilaterally. The extraperitoneal portions of the round ligaments of the uterus were transected bilaterally to facilitate pelvic dissection. The Retzius space was dissected 4 cm below the pubic bone, exposing both Cooper's ligaments, Bogros spaces, and iliac vessels. Minor peritoneal defects were closed with Monocryl 4-0 sutures. The central defect of the posterior sheath was closed with a running PDS 2-0 suture.

Fig. 5. Size of hernia defect after Posterior component separation Transversus abdominis muscle release. Titanium anchor screws installed in the spina iliaca anterior superior

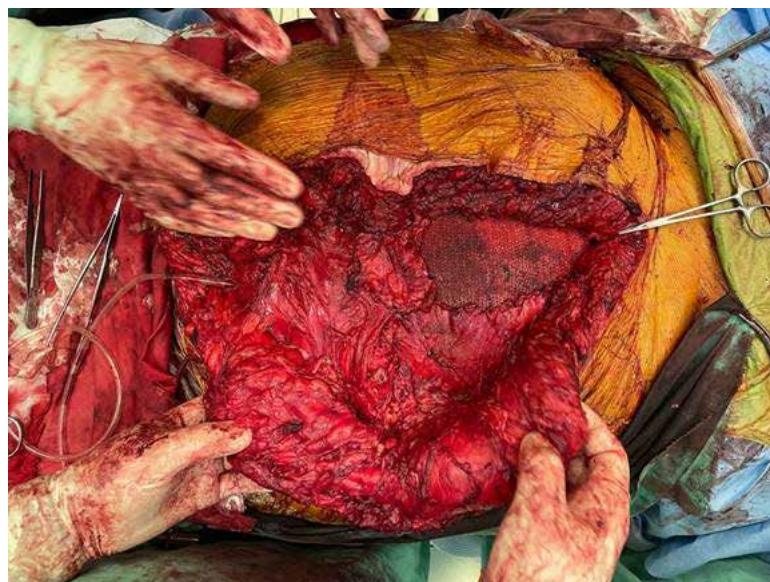
Using blunt dissection, the anterior superior iliac spines were identified and visualized bilaterally, where one titanium bone anchor screw (Smith & Nephew, 4×8 mm) with attached reinforced sutures was placed on each side.

A Covidien Parietene mesh (30×45 cm) was positioned longitudinally, extending from 4 cm proximal to the xiphoid process to 3 cm below the pubic bones. The mesh was fixed with two PDS 2-0 sutures to Cooper's ligaments and several Vycril 0 sutures to the aponeurotic tissues near the xiphoid process. A second Covidien Parietene mesh (30×45 cm) was placed transversely, perpendicular to the first, creating a double-layered polypropylene coverage in the central defect area, where bridging was most likely and additional strength and structural support were required. Laterally, the mesh extended to both m. iliopsoas muscles. Both meshes were secured to the bone anchors in a single position (Fig. 6). The meshes were further sutured with interrupted Prolene 2-0 stitches at multiple points.

The 30×35 cm aponeurotic defect could not be fully reapproximated due to excessive tissue tension and the

risk of elevated intra-abdominal pressure. The aponeurotic tissues along the periphery were gradually sutured to the meshes with interrupted Prolene 0 stitches at several points, followed by a running Maxon 1 suture along the entire bridging perimeter.

A central bridging area of 20×5 cm was created. The lower portion of the mesh was partially covered with hernia sac tissues, whose connection to the anterior sheath of the left rectus muscle was preserved (Fig. 7).


The retromuscular space and Retzius space were drained bilaterally with active drains, and the space above the mesh was drained with an active drain. The subcutaneous fat was closed with Vycril 0 sutures, eliminating dead space. Skin sutures and an antiseptic dressing were applied.

Research results and their discussion

The postoperative course was consistent with the complexity of the procedure. Patient mobilization began on postoperative day 3. Active retromuscular drains and the Retzius space drain were removed on days 5 and 7,

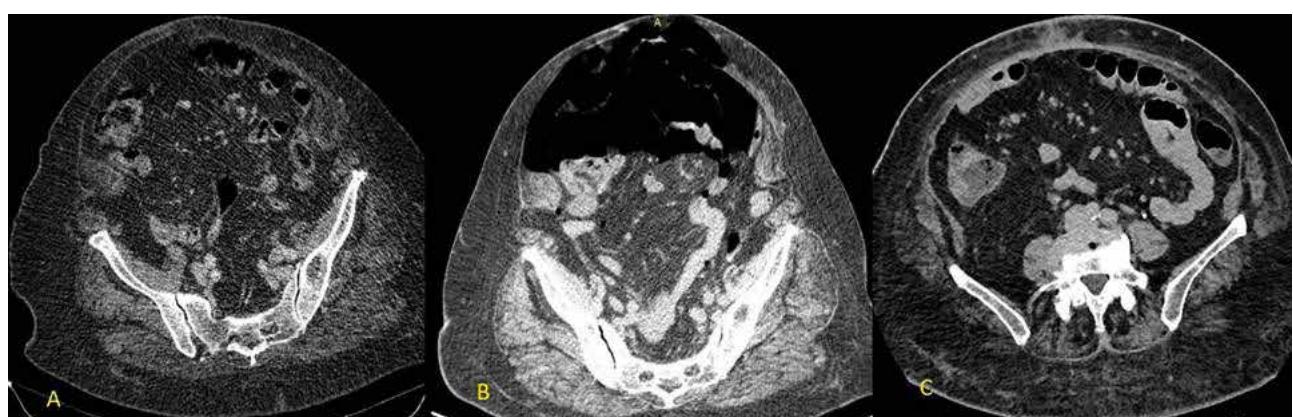
Fig. 6. Two 30x45 cm mesh implants in a cross position

Fig. 7. Final level of reapproximation of the aponeurotic tissues of the anterior sheath of the repair

respectively. The subcutaneous drain was removed on day 8. The patient was discharged on day 9. On postoperative day 14, the patient presented with a seroma in the central portion of the surgical scar. The seroma (approximately 100 mL) was widely opened, inspected, and managed with a negative pressure wound therapy (NPWT) system for 10 days, with three dressing changes prior to wound closure.

All symptoms (pain, vomiting, discomfort) resolved completely post-surgery. A CT scan at 6 months confirmed full abdominal wall reconstruction, with muscles restored to their typical anatomical positions and no recurrence (Fig. 8).

The application of a combined approach involving botulinum toxin injections, progressive pneumoperitoneum, TAR technique, and two 30×45 cm macroporous polypropylene meshes in the described clinical case enabled stable abdominal wall reconstruction for a third-time recurrent giant ventral hernia with loss of domain (LoD). This outcome aligns with findings by Novitsky et al. [11], who highlight the efficacy of TAR for large abdominal wall defects. However, our experience suggests that preoperative tissue preparation with botulinum toxin and pneumoperitoneum was a pivotal factor in achieving success. Relaxation of the lateral abdominal muscles with Dysport significantly facilitated the reapproximation of the hernia defect tissues, reducing the risk of excessive tissue tension. Compared to the study by Ibarra-Hurtado et al. [7], where botulinum toxin was used as a standalone preparatory step, we found that adding progressive pneumoperitoneum enhanced the abdominal cavity's adaptation to the hernia sac contents. In our case, insufflating 6000 mL of air over 10 days not only stretched the tissues but also allowed partial visceral reduction prior to surgery, as evidenced by post-preparation CT imaging. This observation partly echoes Subirana et al. [10], where their emphasis was on gradual air insufflation.


The use of two polypropylene meshes fixed to bone anchors provided additional strength to the reconstruction, particularly in the central bridging zone (20×5 cm). We consider this technique to be a solution to the issue of the inability to achieve complete aponeurotic reapproximation and the consequent need for bridging. In contrast to

traditional methods described by Bhardwaj et al. [3], which report recurrence rates of 30–80%, our approach showed no recurrence over 6 months, offering grounds for optimism. Nevertheless, the occurrence of a seroma on postoperative day 14 highlights the need to refine drainage techniques or postoperative care, potentially through broader use of negative pressure wound therapy systems.

This case highlights the importance of a comprehensive approach to giant hernias with LoD. In our opinion, future studies should focus on optimizing the amount of pneumoperitoneum and the duration of preparation, as well as comparing different types of mesh implants in similar scenarios. Our experience suggests that personalized tissue preparation may become the standard for such complex reconstructions.

Conclusions

This clinical case is an example of the effective use of a combined approach for abdominal wall reconstruction in a complex case of a third recurrent giant ventral hernia with loss of domain (LoD). The significant size of the defect (30×35 cm) and the history of unsuccessful previous surgical interventions using mesh implants are a difficult challenge for surgeons. The use of botulinum toxin injections allowed significant relaxation of the lateral muscles of the abdominal wall, which made it possible to reduce tissue tension before surgery. Progressive pneumoperitoneum gradually expanded the volume of the abdominal cavity, preparing it for the relocation of internal organs without excessive pressure. The use of the TAR (Transversus Abdominis Release) technique became a key stage of the operation, as it allowed to mobilize tissues and provide sufficient coverage of the defect. For additional strength, two polypropylene meshes were used, which were securely fixed with bone anchors, which ensured the stability of the structure. The postoperative period was complicated by the formation of a subcutaneous seroma, but thanks to the use of the NPWT system, this problem was eliminated without a negative impact on the outcome. Within 6 months after surgery, no hernia recurrence was observed, which indicates the effectiveness of the approach. This case highlights the importance of

Fig. 8. Comparison of CT scans at three stages: A) before preparation B) after Botox with progressive pneumoperitoneum and C) 6 months after abdominal wall reconstruction

individual planning and combining modern methods to achieve success in the treatment of complex hernias. However, to generalize these findings, larger clinical

studies with a larger number of patients and a longer follow-up period are needed to confirm the reliability and safety of this method in the long term.

BIBLIOGRAPHY

1. Parker SG, Halligan S, Liang MK, et al. Definitions for Loss of Domain: An International Delphi Consensus of expert surgeons. *World Journal of Surgery* [Internet]. 2019 Dec 17; 44(4): 1070–8. PMID: 31848677. DOI: 10.1007/s00268-019-05317-z.
2. Hodgkinson JD, Maeda Y, Leo CA, et al. Complex abdominal wall reconstruction: a novel approach to postoperative care. *Hernia*. 2020; 24(3): 647–654. PMID: 28102927. DOI: 10.1111/codi.13609.
3. Bhardwaj P, Huayllani MT, Olson MA, Janis JE. Year-Over-Year Ventral Hernia Recurrence Rates and Risk Factors. *JAMA surgery*. 2024; 159(6): 651–658. <https://doi.org/10.1001/jamasurg.2024.0233>.
4. Muysoms FE, Miserez M, Berrevoet F, et al. Classification of primary and incisional abdominal wall hernias. *Hernia*. 2009; 13: 407–414. <https://doi.org/10.1007/s10029-009-0518-x>.
5. Parker SG, Halligan S, Blackburn S, et al. What Exactly is Meant by “Loss of Domain” for Ventral Hernia? Systematic Review of Definitions. *World journal of surgery*. 2019; 43(2): 396–404. <https://doi.org/10.1007/s00268-018-4783-7>.
6. Tanaka EY, Yoo JH, Rodrigues AJ, et al. A computerized tomography scan method for calculating the hernia sac and abdominal cavity volume in complex large incisional hernia with loss of domain. *Hernia*. 2010; 14(3): 259–264. DOI: 10.1007/s10029-009-0608-2.
7. Ibarra-Hurtado TR, Nuño-Guzmán CM, Echeagaray-Herrera JE, et al. Use of botulinum toxin type A before abdominal wall hernia repair. *Hernia*. 2014; 18(6): 765–772. DOI: 10.1007/s10029-014-1265-7.
8. Timmer AS, Claessen JJM, Atema JJ, Rutten MVH, Hompes R, Boermeester MA. A systematic review and meta-analysis of technical aspects and clinical outcomes of botulinum toxin prior to abdominal wall reconstruction. *Hernia*. 2021; 25(6): 1413–1425. <https://doi.org/10.1007/s10029-021-02499-1>.
9. Ioffe OYu, Tarasiuk TV, Kryvopustov MS, Stetsenko OP. Enhanced recovery pathway after laparoscopic hernioplasty in patients with ventral hernias: is it necessary to apply? *Clinical and Preventive Medicine*. 2024; 2: 6–13. <https://doi.org/10.31612/2616-4868.2.2024.01>.
10. Subirana H, Comas J, Crusellas O, et al. Preoperative Progressive Pneumoperitoneum in the Treatment of Hernias With Loss of Domain. Our Experience in 50 Cases. *Journal of abdominal wall surgery: JAWS*. 2023; 2: 11230. <https://doi.org/10.3389/jaws.2023.11230>.
11. Novitsky YW, Fayezizadeh M, Majumder A, Neupane R, Elliott HL, Orenstein SB. Outcomes of Posterior Component Separation With Transversus Abdominis Muscle Release and Synthetic Mesh Sublay Reinforcement. *Annals of surgery*. 2016; 264(2): 226–232. <https://doi.org/10.1097/SLA.0000000000001673>.

Надійшла до редакція 28.04.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування orest.laver@uzhnu.edu.ua

UDC 616.24-073.173-06:616.12-008.318j-057

DOI <https://doi.org/10.32782/2226-2008-2025-5-12>

O. I. Panyuta <https://orcid.org/0000-0003-4710-8441>

O. M. Ignatyev <https://orcid.org/0000-0002-7538-2854>

L. I. Zahorodnia <https://orcid.org/0000-0003-1908-0461>

T. M. Yamilova <https://orcid.org/0000-0001-9609-1688>

VENTRICULAR BIGEMINY AS A COMPLICATION OF SPIROMETRY PERFORMED IN A PATIENT WITH A HISTORY OF WORK IN HARMFUL WORKING CONDITIONS – A CLINICAL CASE

Odesa National Medical University, Odesa, Ukraine

UDC 616.24-073.173-06:616.12-008.318j-057

O. I. Panyuta, O. M. Ignatyev, L. I. Zahorodnia, T. M. Yamilova

VENTRICULAR BIGEMINY AS A COMPLICATION OF SPIROMETRY PERFORMED IN A PATIENT WITH A HISTORY
OF WORK IN HARMFUL WORKING CONDITIONS – A CLINICAL CASE

Odesa National Medical University, Odesa, Ukraine

Introduction. The study of the external respiratory function (spirometry) is a generally recognized gold standard for the study of the respiratory system, mandatory for many pulmonary diseases. Global standards for the management of patients with bronchial asthma (GINA) and chronic obstructive lung disease define spirometry as the main method for assessing the effectiveness of treatment and determining the prognosis of these diseases. At the same time, the stress nature of the study and the tests performed during the study with inhaled adrenomimetics as bronchodilators can have a significant effect on the cardiovascular system of the patients being examined. Adrenomimetics are expected to cause an increase in heart rate and tachycardia-related arrhythmias – atrial fibrillation and similar conditions.

Objective: present a case of the “atypical” side effect of bronchodilator test during spirometry.

Results. The article presents a case of bigeminy, which developed as a side effect of a test with bronchodilators (salbutamol) during the study of the external respiratory function. This response to adrenergic drugs may be considered as atypical, since there is general agreement that tachycardia should prevent the development of ventricular bigeminy. The study was conducted on a patient with pneumofibrosis (pneumoconiosis), which developed as a result of long-term work in conditions of increased dustiness.

Conclusions. Cardiovascular pathology associated with pneumoconiosis may be considered a possible explanation for the development of bigeminy following salbutamol administration.

Keywords: functional diagnostics, spirometry, bronchodilator test, arrhythmia.

УДК 616.24-073.173-06:616.12-008.318j-057

О. І. Панюта, О. М. Ігнатєв, Л. І. Загородня, Т. М. Ямілова

АЛОРІТМІЧНА АРІТМІЯ ЯК УСКЛАДНЕННЯ ДОСЛІДЖЕННЯ ФУНКЦІЇ ЗОВНІШНЬОГО ДИХАННЯ
У ПАЦІНТА З АНАМНЕЗОМ РОБОТИ ЗІ ШКІДЛИВИМИ УМОВАМИ ПРАЦІ – КЛІНІЧНИЙ ВИПАДОК

Одеський національний медичний університет, Одеса, Україна

Спірометрія – загальновизнаний золотий стандарт дослідження дихальної системи, обов’язковий за наявності багатьох пульмологічних захворювань. Разом із тим навантажувальний характер дослідження та виконувані під час дослідження проби з інгаляційними адреноміметиками як бронхолітиками можуть істотно впливати на серцево-судинну систему обстежуваних пацієнтів. У статті подано випадок бігемії, яка розвинулася як побічний ефект проведення проби з бронхолітиками (салбутамол) під час дослідження функції зовнішнього дихання. Дослідження проводилося пацієнту з пневмоконіозом, який розвинувся внаслідок тривалої роботи у умовах підвищеної запиленості.

Ключові слова: функціональна діагностика, спірометрія, проба з бронхолітиками, аритмія.

Introduction

Spirometry is used to assess the condition and reactivity of the respiratory tract, the impact of diseases on lung function, and determine the results of using certain medications. Spirometry also allows assessment of the preoperative risk associated with inhalation anesthesia during elective surgeries, to assess the functional reserves of the lungs and the rehabilitation prognosis in patients with chronic diseases complicated by respiratory failure of various origins [1].

Assessment of pulmonary function consists of a series of sequential maneuvers designed to determine the maximum values of pulmonary ventilation. The procedure involves the patient performing a maximum inhalation, forced exhalation, and a maximum inhalation after forced exhalation. The cycle can be repeated several times until the test is performed correctly and a uniform closed flow-volume curve is obtained, allowing accurate assessment of the parameters [2].

There are known difficulties in obtaining reproducible results when performing the test on patients with restrictive breathing disorders. Restriction may be the result of a congenital disorder of the elasticity of the lung tissue, acquired pneumofibrosis in pneumoconiosis, etc. Such a

© O. I. Panyuta, O. M. Ignatyev et al, 2025

Стаття поширюється на умовах ліцензії

condition may require repeated forced breathing cycles up to 6–8 times and may be difficult for patients with significant impairment. [3].

Modern guidelines note that, despite the stressful nature of the study, significant side effects (fainting, arrhythmia) occur no more often than 5 out of 10,000 studies [4].

Spirometric testing may include assessment of reversibility of broncho-obstruction when using bronchodilators, which helps clarify the diagnosis and determine the appropriateness of their use as a drug [5]. Depending on the clinical indication, inhaled adrenergic agonists or anticholinergics can be used as a bronchodilator. Most often, short-acting inhaled adrenergic agonists (salbutamol or albuterol) are used.

According to standard protocols, initial diagnostic spirometry requires the first diagnostic spirometry (without additional instructions) requires the use of inhalation of two or more therapeutic doses of a bronchodilator. Such an excess of dosage is due to the difference between the time of the direct bronchodilatory effect of drugs and the time during which bronchodilators prevent bronchospasm. The second effect is significantly longer, while maximum bronchodilation when using therapeutic doses can last for minutes.

The following side effects of bronchodilators are most often observed: muscle tremor, tachycardia, headache, irritation of the mucous membrane, increased pressure, nausea, which typically resolve spontaneously [6].

Since spirometry is generally considered safe, performing a test with bronchodilators, although not mandatory, is recommended to be carried out immediately, so as not to require the patient to undergo spirometry again.

Potential side effects are not taken into account, and prior additional examinations for the presence of comorbid pathology are the responsibility of the physician who prescribed spirometry. This attitude is significantly different from other pharmacological stress tests, for example in cardiology and cardiac surgery [7; 8]. That may lead to unexpected results.

Objective: present a case of “atypical” side effect of bronchodilator test during spirometry.

Materials and Methods

We present the case of patient B., a man born in 1970, who worked as a tallyman for over 25 years. The patient's written consent to the processing of his personal data has been obtained. In May 2024, the patient due to a long-term lung disease underwent spirometry that provoked an atypical complication. The patient was consulted and examined by the staff of the Department of Occupational Pathology at the Odesa Regional Clinical Center regarding the possible association between his underlying disease, the spirometry-related complication, and occupational exposure. The article was discussed at the meeting of the department and proposed to be submitted for publication in the Odesa Medical Journal, Protocol No. 7/1 dated 02/28/2025.

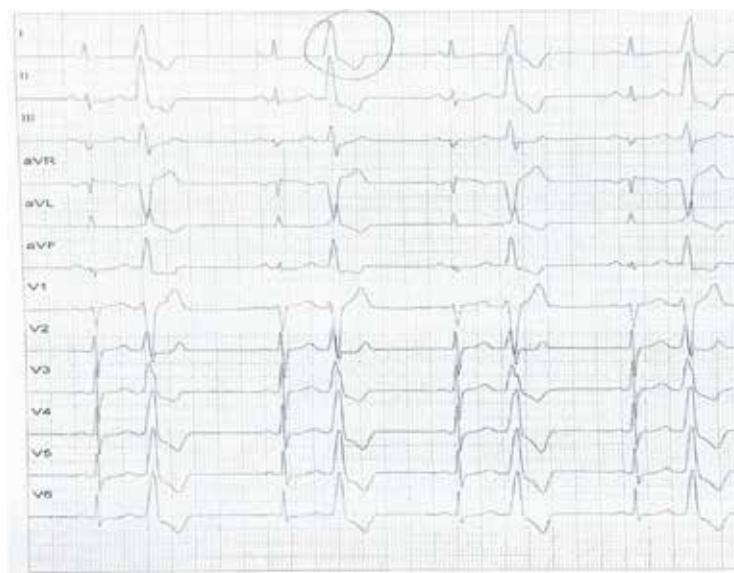
The research was carried out with the provision of safety measures for life and health, with respect for human rights and moral and ethical standards, which corresponds to the principles of the Helsinki Declaration of Human Rights and

the order of the Ministry of Health of Ukraine No. 693 dated 01.10.2015, the Council of Europe Convention on Human Rights and of biomedicine (ETS-164) dated 04.04.1997, the Status of the Ukrainian Association for Bioethics and GCP norms (1992).

Research results and their discussion

We present the case of patient B., a man born in 1970 (53 years old at the time of the 1st consultation), who worked as a tallyman for over 25 years handling bulk cargo at the port. The tallyman's work is classified as hazardous work with dust levels in the air of the working area significantly exceeding the MAC.

During the consultation, the patient complained of a cough with the release of a small amount of viscous sputum, shortness of breath during physical exertion, and chest pain.


From the anamnesis, it is known that the patient considers himself ill since 2017, which led to early retirement. He associates a significant deterioration in his condition with a forced move to Odessa in early 2024 due to military action in eastern Ukraine. After examination by the family doctor, the patient underwent a number of studies, including CT of the lungs on 04.2024, which revealed multiple pulmonary nodules measuring 2–5 mm in diameter, and a study of the function of external respiration, which was performed on 05.2024. Spirometry revealed a moderate mixed ventilatory impairment with predominant obstruction (VC – 67%, FEV₁ – 66%). A bronchodilator test with two puffs of salbutamol demonstrated a positive response, with FEV₁ increasing by 280 ml.

After the test with salbutamol, the patient complained of a sharp deterioration in health, dizziness, a sensation of palpitations or irregular heartbeats, and extreme weakness. The patient urgently underwent an ECG, which demonstrated ventricular bigeminy (Fig. 1).

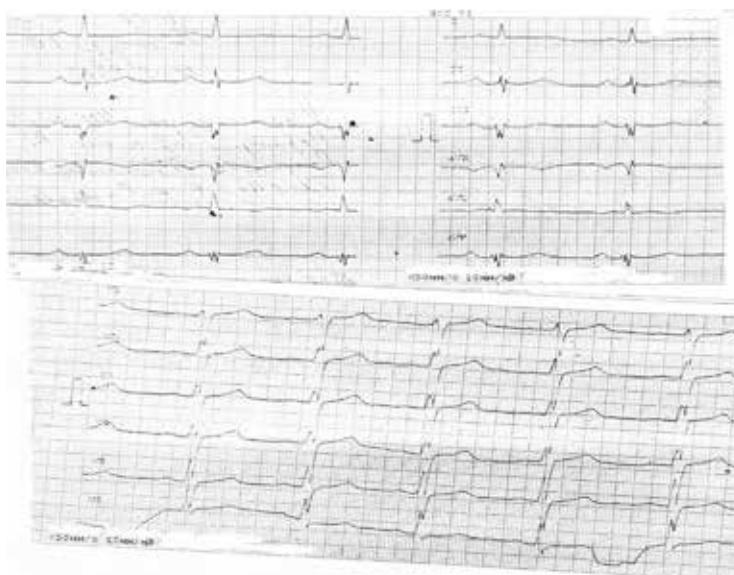
Bigeminy persisted for an hour with progression to trigeminy and subsequent restoration of the rhythm.

During a detailed cardiological examination, it was found that the patient had previously reported cardiac-related symptoms – palpitations with a sensation of cardiac pauses, an increase in blood pressure to 160/100 mm Hg, which were associated with an exacerbation of pulmonary pathology. The patient had not previously been examined for heart disease and did not receive treatment. Resting ECG showed signs of cardiac hypertrophy (P-pulmonale, impaired intraventricular conduction) (Fig. 2), ECG monitoring revealed single ventricular extrasystoles, ultrasound of the heart – moderate myocardial hypertrophy with concentric remodeling, EF – 53%, cardiac chambers were not dilated, signs of pulmonary hypertension were not detected. During subsequent observation, no significant rhythm disturbances or other cardiac disorders were observed.

Ventricular bigeminy is a form of heart rhythm disorder consisting of alternation of normal and extrasystolic contractions with a certain sequence 1:1, 2:1, etc. The empirically derived “law of bigeminy” is known, according to which this arrhythmia more often develops with bradycardia, but tachycardia prevents it [9]. Therefore, the occurrence of bigeminy against the background of taking

Fig. 1. Patient B., 53 years old, ECG after taking two doses of salbutamol

inhaled adrenergic agonists, which cause tachycardia, requires additional explanation [10].


According to the ESC Guidelines for the management of patients with ventricular arrhythmias (2022) all patients with documented non-sustained or sustained ventricular arrhythmias should undergo a 12-lead electrocardiogram (ECG) at rest and a transthoracic echocardiogram to identify underlying heart disease, including hereditary and acquired cardiomyopathies [11].

This was performed on the patient, but no significant changes were found that would allow a definitive diagnosis of the corresponding cardiac pathology. The detected "non-specific" changes can be interpreted in a wide range from signs of arterial hypertension to "age-related" changes. However, if we take into account the history of many years working in harmful conditions and the clinical and instrumental picture of pneumoconiosis, we can assume that the detected

changes were provoked by long-term pulmonary pathology and their manifestations are aggravated by exacerbations/decompensation of lung disease.

The severity of clinical manifestations of cardiac pathology directly depends on the degree of pneumoconiosis (in fact, the prevalence of pneumofibrosis) and the duration of the disease. In patients with pneumoconiosis, unstable blood pressure is observed with the subsequent development of arterial hypertension; hypertrophy of the heart with subsequent dilatation; pulmonary hypertension with subsequent decompensation and the progression to heart failure; the development of arrhythmias. Arrhythmias, which were provoked by pneumoconiosis, are usually associated with overstrain, hypertrophy and dilatation of the myocardium.

That is, the patient experienced metabolic shifts in the ventricular myocardium against the background of

Fig. 2. Patient B., 53 years old, resting ECG

an exacerbation of the pulmonary disease, but the cells of the sinus node remained intact. Therefore, when the use of salbutamol enhanced excitability of ventricular myocardium, this did not lead to sinus tachycardia, but contributed to a sharp increase in trigger activity in the ventricular conduction system and the resulting in a transient episode of ventricular bigeminy for the duration of high salbutamol concentration in the blood (up to 90 minutes).

Conclusions

Pneumofibrosis, as a result of harmful production factors, develops over decades and is typically accompanied by characteristic "non-specific" myocardial changes. These changes in the practice of occupational pathology are

additional evidence of long-standing disease and allow us to distinguish pneumoconiosis from post-inflammatory pneumofibrosis.

Since a patient with pneumoconiosis will seek medical help during an exacerbation/decompensation of the process in the lungs, it can be assumed that the heart at this time will be more sensitive to provoking agents, such as inhaled adrenergic agonists, than would be expected based on the results of standard studies.

Underestimation of the clinical picture of pneumoconiosis and occupational history (25 years of work in dusty conditions) and CT results (signs of nodular pneumofibrosis) contributed to an unexpected adverse reaction with the manifestation of an "atypical" form of arrhythmia.

BIBLIOGRAPHY

1. Graham BL, Steenbruggen I, Miller MR, et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. *American Journal of Respiratory and Critical Care Medicine*. 2019 Oct 15; 200(8): e70–e88. <https://doi.org/10.1164/rccm.201908-1590ST>.
2. Hankinson JL, Eschenbacher B, Townsend M, Stocks J, Quanjer PH. Use of forced vital capacity and forced expiratory volume in 1 second quality criteria for determining a valid test. *European Respiratory Journal*. 2015; 45(5): 1283–1292. <https://doi.org/10.1183/09031936.00116814>.
3. Kaminsky DA, Cockcroft DW, Davis BE. Respiratory System Dynamics. Seminars in Respiratory and Critical Care Medicine. 2023 Jul 10; 44(05): 526–537. [10.1055/s-0043-1770058](https://doi.org/10.1055/s-0043-1770058).
4. 4. Roberts C, Ward S, Walsted ES, Hull JH. Safety of pulmonary function testing: data from 20 years. *Thorax*. 2018 Apr; 73(4): 385–7. <https://doi.org/10.1136/thoraxjnl-2017-210246>.
5. Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention: 2024 Update [Internet]. Fontana, WI: *Global Initiative for Asthma*; 2024 [cited 2025 Oct 29]. Available from: https://ginasthma.org/wp-content/uploads/2024/05/GINA-2024-Strategy-Report-24_05_22_WMS.pdf.
6. Emeryk A, Janeczek K, Markut-Miotła E, Pirożyński M, Florkiewicz E. Bronchodilator response after two methods of salbutamol nebulization in asthmatic children. Advances in Dermatology and Allergology. *Postępy Dermatologii i Alergologii*. 2022 Dec; 39(6): 1027–1034. <https://doi.org/10.5114/ada.2022.117038>.
7. Gogayeva, OK, Lebid AY, Tymoshenko DA. Comorbidities in Patients before Surgical Myocardial Revascularization: Current State of the Problem. Part II [Komorbidnist u patsiyentiv pered khirurhichnoyu revaskularyzatsiyeyu miokarda: suchasnyy stan problemy. Chastyna II]. *Ukrainian Journal of Cardiovascular Surgery*. 2022 Sep 26; 30(3): 22–28. [https://doi.org/10.30702/ujcvs/22.30\(03\)/GL039-2228](https://doi.org/10.30702/ujcvs/22.30(03)/GL039-2228) (In Ukrainian).
8. Potashev SV, Salo SV, Gavrylyshyn AY, Hrabyak LM, Unitska OM, Fedkiv SV. Longitudinal Strain by Speckle Tracking during Dobutamine Stress Echocardiography in Suspected Coronary Arteries Disease [Longitudinalna deformatsiya miokarda za metodom speckle tracking pid chas dobutamin-stres-ekhokardiohrafii u khvorykh iz pidozroyu na ishemichnu khvorobu sertsyu]. *Ukrainian Journal of Cardiovascular Surgery*. 2020 Dec 16; (4(41): 15–25. <https://doi.org/10.30702/ujcvs/20.4112/032015-025/73.7> (In Ukrainian).
9. Norouzi J, Papadakis M, Akbarnejad A, Anvari M. The role of pre-participation cardiac evaluation in the management of an athlete with premature ventricular contraction-induced cardiomyopathy: a case report. *Eur Heart J Case Rep*. 2022 May 16; 6(5): ytacl74. <https://doi.org/10.1093/ehjcr/ytac174>.
10. Sethi R, Zakharyan H, Muradyan A. Salbutamol and ipratropium bromide are high risk factors for atrial arrhythmias in patients with COPD and CVS diseases. *European Respiratory Journal*. 2019; 54(suppl 63): PA2462. <https://doi.org/10.1183/13993003.congress-2019.PA2462>.
11. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). *Eur Heart J*. 2022 Oct 21; 43(40): 3997–4126. <https://doi.org/10.1093/eurheartj/ehac262>.

Надійшла до редакція 29.05.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування liudmyla.zagorodnia@onmedu.edu.ua

ФАРМАКОЛОГІЯ І ФАРМАЦІЯ

UDC 614.274:362.45

DOI <https://doi.org/10.32782/2226-2008-2025-5-13>

A. M. Krychkovska¹ <https://orcid.org/0009-0006-0783-7059>

N. L. Zayarnyuk¹ <https://orcid.org/0000-0002-5507-5873>

O. B. Pankevych² <https://orcid.org/0000-0002-1702-8689>

I. R. Buchkevych¹ <https://orcid.org/0000-0002-0155-115X>

O. I. Khomenko³ <https://orcid.org/0000-0001-9175-6919>

V. I. Lubenets¹ <https://orcid.org/0000-0001-6189-0084>

STUDY OF THE ACCESSIBILITY OF MEDICAL AND PHARMACEUTICAL CARE FOR PEOPLE WITH DISABILITIES

¹ Lviv Polytechnic National University, Lviv, Ukraine,

² State Non-Profit Enterprise "Danylo Halytsky Lviv National Medical University", Lviv, Ukraine,

³ Private Higher Educational Institution "Lviv Medical University", Lviv, Ukraine

UDC 614.274:362.45

A. M. Krychkovska¹, N. L. Zayarnyuk¹, O. B. Pankevych², I. R. Buchkevych¹, O. I. Khomenko³, V. I. Lubenets¹

STUDY OF THE ACCESSIBILITY OF MEDICAL AND PHARMACEUTICAL CARE FOR PEOPLE WITH DISABILITIES

¹ Lviv Polytechnic National University, Lviv, Ukraine,

² State Non-Profit Enterprise "Danylo Halytsky Lviv National Medical University", Lviv, Ukraine,

³ Private Higher Educational Institution "Lviv Medical University", Lviv, Ukraine

Introduction. The number of people with disabilities in Ukraine has reached 3 million people, of which more than 300 thousand have received such status since the beginning of the full-scale invasion of Russian troops into Ukraine. This has exacerbated the issue of medical and pharmaceutical services for such patients.

The aim of the study was to identify the problems that people with disabilities face when receiving services in healthcare facilities (HCFs).

Material and methods. The methods of survey, mathematical statistics, generalization and interpretation of results were used. The materials were the results of an oral and questionnaire survey of 481 people with disabilities living in Lviv and the Lviv region.

Results and discussion. The reasons for the difficulty of reaching the HCFs and the physical inconveniences that people with disabilities face when visiting pharmacies and polyclinics were identified. It is shown that this group of patients often encounter cases of inadequate pharmaceutical and medical care, which forces them to defend their rights in conflict situations. Given the existing problems in pharmaceutical and medical services, respondents provided suggestions for improving services in HCFs.

Conclusions. Based on the questionnaire survey, problems of transport and physical accessibility to HCFs, an insufficient level of pharmaceutical and medical services and inappropriate attitude towards them in pharmacies and polyclinics were identified. It is shown that the implementation of the National Strategy for Creating a Barrier-Free Space in Ukraine, integrated into the state healthcare system, will contribute to improving services for people with disabilities. In this regard, it is important to train medical and pharmaceutical workers in serving people with disabilities.

Keywords: people with disabilities, medical and pharmaceutical services, pharmacy, polyclinic.

УДК 614.274:362.45

А. М. Кричковська¹, Н. Л. Заярнюк¹, О. Б. Панькевич², І. Р. Бучкевич¹, О. І. Хоменко³, В. І. Лубенець¹

ДОСЛІДЖЕННЯ ДОСТУПНОСТІ МЕДИЧНОГО ТА ФАРМАЦЕВТИЧНОГО ОБСЛУГОВУВАННЯ ДЛЯ ЛЮДЕЙ З ІНВАЛІДНІСТЮ

¹ Національний університет «Львівська політехніка», Львів, Україна,

² ДНП «Львівський національний медичний університет імені Данила Галицького», Львів, Україна,

³ Вищий приватний навчальний заклад «Львівський медичний університет», Львів, Україна

Кількість людей з інвалідністю в Україні сягнула 3 млн осіб, з яких понад 300 тис. отримали статус з часу повномасштабного вторгнення Росії. Зазначене спричинило загострення проблеми соціальної ізоляції людей з інвалідністю та необхідність створення інклюзивного соціального простору. Проведене опитування людей з інвалідністю у Львові та Львівській області (обсяг вибірки респондентів становив 481 особу) та аналіз отриманих результатів дали можливість з'ясувати проблеми доступності до закладів охорони здоров'я, визначити рівень медичного та фармацевтичного обслуговування.

© A. M. Krychkovska, N. L. Zayarnyuk et al, 2025

Стаття поширюється на умовах ліцензії

Встановлено, що реалізація Національної стратегії зі створення безбар'єрного простору та навчання медичних і фармацевтичних працівників аспектів обслуговування людей з інвалідністю сприятимуть їх обслуговуванню.

Ключові слова: люди з інвалідністю, медичне і фармацевтичне обслуговування, аптека, поліклініка.

Introduction

The protracted war in Ukraine has increased the number of people with disabilities among both military personnel and civilians. As of January 1, 2021, according to the State Statistics Service of Ukraine, there were 2,703,000 people with disabilities in Ukraine, including 222,300 people with disabilities of Group 1, 900,800 of Group 2, 1,416,000 of Group 3, as well as 163,900 children [1]. Over the years of the full-scale invasion, the number of Ukrainians with disabilities has increased by 300 thousand and as of November 2024 had risen to 3 million [2]. At the same time, "the consequences of Russia's aggressive actions not only lead to mass disability of Ukrainians, but also complicate the processes of rehabilitation and socialization of those persons who had previously established disabilities" [2]. Ukraine has experience in creating a barrier-free environment even during the ongoing large-scale conflict; in particular, more than 300 multidisciplinary teams work in hospitals, providing rehabilitation assistance to patients prior to official disability certification [3]. In addition, digitization of social services is being implemented, allowing people to seek assistance remotely, as well as changes in legislation that help people with disabilities work officially, since currently only one in four people with disabilities in Ukraine is formally employed, which is about half the European rate. [4]. An analysis of foreign publications has shown that there are still many unresolved issues regarding the possibilities of participation of people with disabilities in society, in particular, they have problems with access to medical and pharmaceutical services [5]. These problems are related to economic, territorial and infrastructural aspects, as well as to the lack of training and qualifications of medical and pharmaceutical professionals, physical barriers in healthcare facilities (HCFs), lack of resources/technology and language barriers [6]. All these barriers generate injustice, which ultimately leads to increased social isolation of people with disabilities. Protection of these patients from access barriers is an aspect of patient safety and an important component of pharmaceutical safety [7].

The aim of our study was to identify the problems faced by people with disabilities when receiving services in HCFs, namely in pharmacies and polyclinics.

Materials and Methods

The research was carried out within the framework of the international educational project Erasmus+ Jean Monnet 101085257 – GoodPharma – ERASMUS-JMO-2022-HEI-TCH-RSCH "Good solutions for gaps in Pharmacy: in line with the European priorities". Methods of survey, mathematical statistics, generalization and interpretation of results were used. The materials were the results of an oral and questionnaire survey, which were obtained with the help of employees of the Resource Center for Educational Information Technologies for People with Special Needs of the National University "Lviv Polytechnic", the Lviv City Organization of the Ukrainian Society of the Deaf, and the Public Organization "Rehabilitation Fund for the Blind" of

Lviv. The questionnaire was intended for different groups of people with disabilities who had experience visiting pharmacies and polyclinics, and consisted of 22 questions, some of which had from 4 to 6 answer options. The questionnaire provided for filling out the questionnaire by an assistant from the words of the person with disabilities, as well as certification of the respondent's consent. The respondent was expected to identify his disability (mental, motor or sensory) with the opportunity to indicate the type of disorder (deafness, blindness, etc.) or without the obligation to answer this question. In total, the sample of respondents consisted of 481 people living in the city of Lviv and the Lviv region, 479 of them were people with disabilities, 2 – people without disabilities. According to the Confederation of Employers of Ukraine, formed on the basis of the Pension Fund of Ukraine, the number of people with disabilities in the Lviv region as of 2021 was 211.4 thousand people [8]. However, in the conditions of martial law in Ukraine and as a result of the disability of the population, this statistical unit has a tendency to grow. The study used a simplified formula for calculating a simple probability sample in a public opinion poll ($P = 0.954$), which is shown in the case when the general population is more than 5 thousand units: $n = 1/\Delta^2$, where n is the volume of the sample population, Δ is the proportion of the given sampling error. The margin of error of the sample in the case of 481 people is ± 0.046 or $\pm 4.6\%$, that is, the obtained survey results show the investigated validity within the usual measure of reliability ($D = 3-10\%$) [9]. All respondents were adults aged 24–78 full years. By gender, there were 279 women (58.3%) and 200 men (41.7%). By place of residence, respondents were distributed: city – 85.4%, village – 12.5%, urban-type settlement – 2.1%. By level of education: incomplete secondary – 4.2%, secondary – 45.8%, secondary special – 22.9%, higher education – 27.1%. There were no respondents without education among the surveyed persons with disabilities. The distribution of respondents by age is presented in Fig. 1.

Respondents financially support themselves as follows: receive a pension or social assistance – 89.6% (among them 29.2% have permanent jobs), live only on wages – 6.2%, have non-permanent or seasonal work – 4.2%. By type of disability, respondents were distributed as follows: hearing disability – 68.1%, musculoskeletal disorders – 29.8%, visual impairment – 2.1%.

Research results and their discussion

It was found that three-quarters of respondents (74.5%) have the opportunity to receive pharmacy services within walking distance from their place of residence, the remaining 25.5% reported no such opportunity. Slightly more than half of the respondents (57.4%) have access to a polyclinic within walking distance, the remaining 42.6% require transport to reach the polyclinic.

The reasons for the difficulty of getting to pharmacies were indicated by 133 people (28.3%), and to polyclinics by 430 people (89.4%) of all respondents. This question

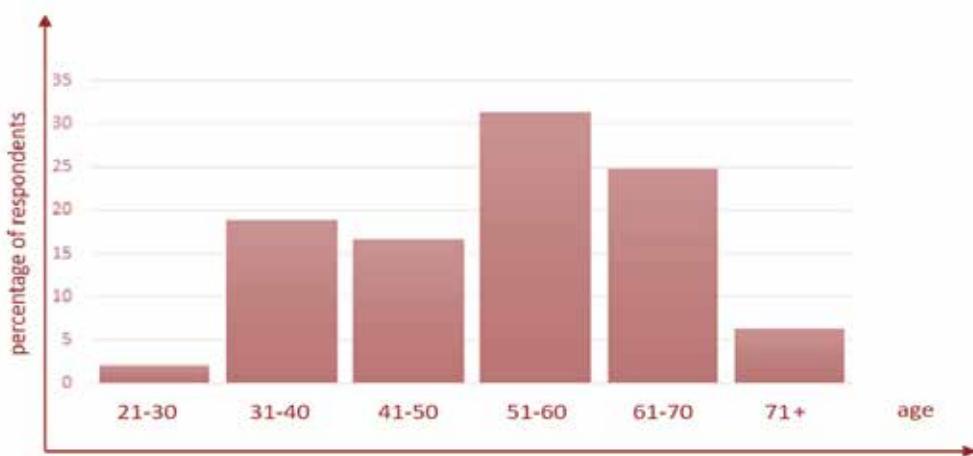


Fig. 1. Distribution of respondents by age groups, %

could be answered several times, accordingly, a total of 460 answers were given regarding pharmacies and 509 – regarding polyclinics. As can be seen from the data in Fig. 2, more than half of them indicated limited accessibility of public transport as the most common reason for the difficulty of getting to HCFs (58.3% – to pharmacies, 58.8% – to polyclinics), more than a tenth – uncomfortable transport service and lack of notifications about arrival at the destination, about a tenth – the need for accompaniment by another person.

The physical inconveniences that people with disabilities face when visiting pharmacies and polyclinics were indicated by 300 and 248 people, respectively, which amounted to 62.4% and 51.6% of all respondents. Since it was possible to provide multiple answers to this question, a total of 415 answers were given regarding physical inconveniences in pharmacies, and 382 answers regarding polyclinics.

The data in Table 1 demonstrate a difference in the answers provided depending on the type of HCFs. More than a third of respondents (36.1%) noted the absence of waiting and rest areas for visitors in pharmacies, almost

one fifth (19.0%) indicated that the entrance to pharmacies is inconvenient for various reasons, at least one tenth of respondents observed inconveniences associated with opening the entrance doors of pharmacies outwards (12.3%) and narrow doorways (10.3%). The inconvenient location of pharmacies and the absence of a pharmacist call button were indicated by about a tenth of respondents (9.9% each), and the height of pharmacy counters – by 2.4%.

In polyclinics, according to respondents, physical barriers are primarily caused by the entrance to them (22.2%), the absence of a medical worker call button (20.9%), and the absence of waiting and rest areas for visitors (18.1%). Somewhat less problematic were the inconvenient location of polyclinics (14.7%) and narrow doorways (12.6%). For some respondents, physical obstacles include outward-opening entrance doors (7.8%) and the height of patient registration desks (3.7%).

In addition to physical inconveniences that make it difficult to visit HCFs, people with disabilities often encounter cases of inadequate pharmaceutical and medical services (48.9% and 69.6% of respondents, respectively). This question could be answered several times, so a total

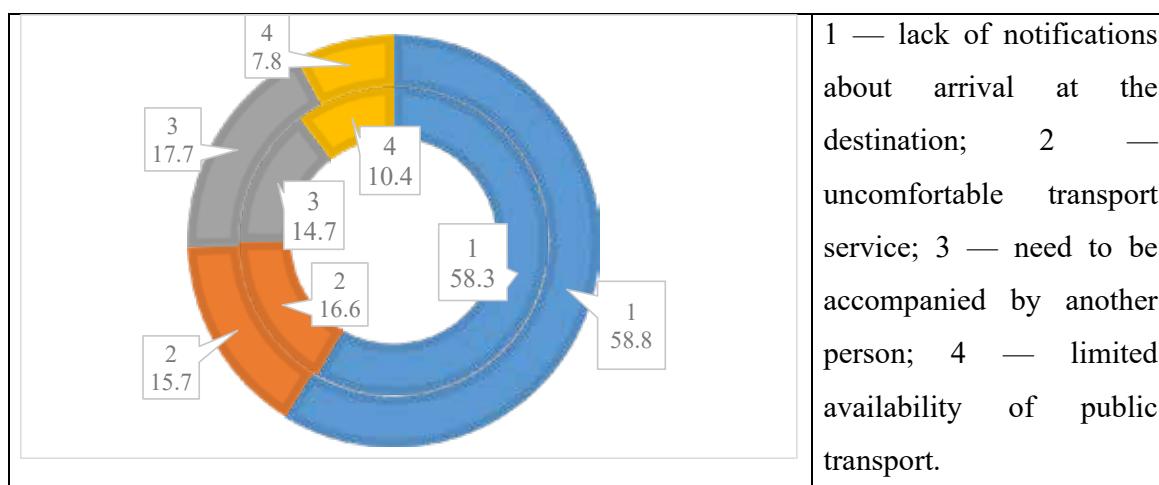


Fig. 2. Distribution of respondents' answers regarding the reasons for difficulty in reaching a HCFs (inner circle – pharmacy, outer circle – polyclinic) (in %)

Table 1

**Distribution of respondents' answers regarding the difficulties they encounter when visiting HCFs
(the question had multiple answers)**

No	Physical inconveniences faced by persons with disabilities in HCFs	Distribution of respondents			
		pharmacy (n = 300)		polyclinic (n = 248)	
		fraction, %	rank	fraction, %	rank
1	Lack of waiting and rest areas for visitors in the pharmacy/polyclinic	36.1	1	18,1	3
2	The entrance to the pharmacy/polyclinic is inconvenient because of the stairs (or for other reasons)	19.0	2	22,2	1
3	The outward-opening entrance door and prevents the movement of a person in a wheelchair/blind person	12.3	3	7,8	6
4	Narrow doorways	10.3	4	12,6	5
5	The location of the pharmacy/polyclinic is inconvenient	9.9	5–6	14,7	4
6	Absence of a call button for a pharmaceutical/medical worker of a pharmacy/polyclinic	9.9	5–6	20,9	2
7	Pharmacy counters/registration desks are too high for effective communication	2.4	7	3,7	7
Total		100.0	x	100.0	x

of 249 answers were given regarding pharmacies and 363 answers regarding polyclinics.

Table 2 shows that more than four-fifths of these answers concerned practical experience in pharmaceutical and medical services for people with disabilities, more than one-tenth – lack of professional ethics. It is unfortunate that respondents, although a small proportion (less than one-twentieth), noted the lack of empathy among medical and pharmaceutical workers as a professionally significant quality.

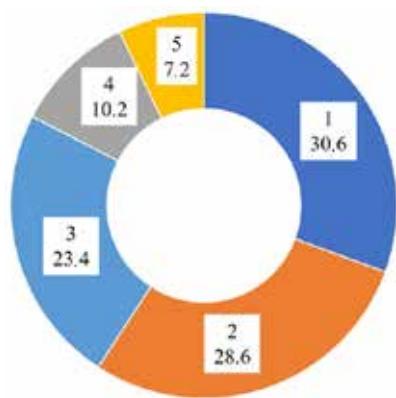
Part of the people with disabilities were forced to defend their rights in conflict situations that arose during

service in HCFs: in pharmacies – 51.2% of all respondents, and in polyclinics – 60.3%. In their responses regarding further actions after cases of inappropriate treatment in HCFs, respondents indicated several points at once. In total, 272 responses were received regarding pharmacies, and 331 responses regarding polyclinics. As can be seen from the data in Table 3, the unfortunate fact is that for one reason or another, almost two-fifths of the respondents who experienced inappropriate treatment in HCFs did not take any measures. Although a third of the respondents in such situations turned to public organizations of people with disabilities, about one-fifth also defended their

Table 2

Distribution of respondents' answers regarding the features of pharmaceutical and medical services

Reasons for negative staff behavior	Distribution of respondents' answers, %	
	pharmacy (n = 249)	polyclinic (n = 363)
Lack of practical experience in providing services to people with disabilities	84.5	81.0
Lack of professional ethics	11.4	14.5
Lack of empathy	4.1	4.5
Total	100.0	100.0


Table 3

Distribution of respondents' answers regarding steps and actions taken by them during and after incidents of mistreatment in HCFs

Characteristics of behavior and actions during and after cases of inappropriate treatment in HCFs	Distribution of respondents' answers, %	
	pharmacy (n = 272)	polyclinic (n = 331)
Contacted public organizations of people with disabilities	58.8	54.4
Defended their rights in a conversation with healthcare workers	29.5	33.2
Contacted the health care administration	7.3	9.1
Contacted social security authorities	4.4	3.3
Contacted the human rights bodies	–	–
Total	100.0	100.0

rights in a conversation with health care workers. A small part of people with disabilities turned to the health care administration and social protection bodies. Citizens did not turn to human rights bodies.

Given the existing problems in pharmaceutical and medical services, 73.0% of respondents provided suggestions for improving services in HCFs. This question could be answered multiple times, so a total of 382 responses were given.

Fig. 3. Distribution of respondents' answers regarding proposals for improving medical/pharmaceutical services in HCFs (%)

need for medical and pharmaceutical specialists to provide written information on taking medications, one tenth (10.2%) – the availability of information in HCFs that is accessible to people with disabilities (in Braille, large print, QR code with audio), less than one tenth (7.2%) – the placement of information stands at a height convenient for people in wheelchairs.

So, as the survey results show, a significant part of the respondents, on the one hand, indicated difficult access to public transport and HCFs, on the other hand, an insufficient level of pharmaceutical and medical services, inappropriate attitude towards them in pharmacies and polyclinics, as well as ways to improve their service in HCFs.

The results obtained correlate with the data of foreign scientists, according to which the most significant obstacles to access to community pharmacy services for people with disabilities were physical location and transportation [10], the stressful nature of the pharmacy environment, the need for more attention and appropriate advice [11], the lack of special training and awareness of pharmacists, difficulties in communicating with patients with various disabilities and the inadequacy of the physical environment in community pharmacies for serving these patients [12], and to medical institutions – the lack of communication between professionals and the patient/guardian, attitudinal/behavioral problems, inadequate service provision, organizational and transportation barriers [6].

At the same time, improving the quality of medical and pharmaceutical services should include accessibility, fairness, competence of medical and pharmaceutical professionals and patient-centeredness [13]. It is important to improve the training of specialists by integrating the content of serving patients with disabilities into their training curricula and ensuring continuous professional development [12].

As can be seen from the data in Fig. 3, less than a third of the responses (30.6%) concerned the introduction of a course on the rules of medical/pharmaceutical services for patients with disabilities into the curriculum of educational institutions.

More than one fifth part (28.6%) – periodic trainings/lectures for pharmacy and polyclinic employees on the peculiarities of dealing with and communicating with people with disabilities, less than one fifth (23.4%) – the

1. Introduce a course on the rules of medical/pharmaceutical services for patients with disabilities into the curriculum of educational institutions.
2. Periodically conduct trainings/lectures for pharmacy and polyclinic employees on the peculiarities of dealing with and communicating with people with disabilities.
3. Medical and pharmaceutical specialists should provide written information on taking medications.
4. HCFs should have information accessible to people with disabilities (in Braille, large print, QR code with audio).
5. Information stands should be located at a height convenient for people in wheelchairs.

That is, in addition to transport and physical accessibility, an important factor that improves service is the awareness and information of both specialists and people with disabilities. This requires, on the one hand, improving the quality of education of specialists through more frequent communication during their training with people with disabilities, on the other hand, the implementation and dissemination of inclusive education and modern forms of medical and pharmaceutical services, in particular, the implementation of special software "ConnectPRO" in all HCFs, which will contribute to the optimization of service to people with hearing disability on a free basis [14].

The implementation of the National Strategy for Creating a Barrier-Free Space in Ukraine for the period until 2030 [15] will contribute to improving service to people with disabilities, the purpose of which is to create a barrier-free environment for all population groups, ensure equal opportunities for each person to exercise their rights, receive services on an equal basis with others by integrating physical, informational, digital, social and civic, economic and educational barrier-free access into all areas of state policy. At the same time, this strategy envisages the integration of concepts and mechanisms of barrier-free access into the state healthcare system and the training of medical professionals, as well as the integration of state healthcare policy in terms of population health, education, humanization and cultivation of a healthy lifestyle with the state policy of barrier-free access (the principle of «health, not treatment»).

Conclusions

1. The survey allowed us to identify gaps in medical and pharmaceutical services for people with disabilities, to determine their behavioral characteristics in case of conflict

situations in HCFs, and to take into account the opinions of these individuals and their proposals for measures to change the quality of their services based on the implementation of the National Strategy for Creating a Barrier-Free Space in Ukraine for the period until 2030.

2. It is urgent to introduce into the programs of medical (pharmaceutical) higher education institutions a separate educational component for higher education applicants

and a course for industry professionals in pre-certification cycles or advanced training courses on the rules of behavior and communication with patients with disabilities, which is a requirement of the time.

3. It is important to periodically conduct trainings/lectures for healthcare workers on the peculiarities of behavior and communication with people with disabilities, as well as to conduct training in the basics of sign language.

BIBLIOGRAPHY

1. Pesotska Y. Regulatory and legal provision of social rehabilitation of persons with disabilities. *Soc Work Soc Educ* [Internet]. 26 Oct. 2022 [cited 19 Jun. 2025];2(9):121-9. (In Ukrainian). Available from: [https://doi.org/10.31499/2618-0715.2\(9\).2022.267102](https://doi.org/10.31499/2618-0715.2(9).2022.267102).
2. Ministerstvo sotsialnoi polityky, pres-tsentr, novyny [Internet]. Ministr sotsialnoi polityky Ukrayiny Oksana Zholnovych v efiri Natsionalnoho telemarafonu rozpovila pro sotsialnu polityku ta zminy v 2023 rotsi; 30 Dec. 2022 [cited 19 Jun. 2025]. (In Ukrainian). Available from: <https://www.msp.gov.ua/press-center/news/ministr-sotsialnoyi-polityky-ukrayiny-oksana-zholnovych-v-efiri-natsionalnoho-telemarafonu-rozgovila-pro-sotsialnu-polityku-ta-zminy-v-2023-rotsi>.
3. Ministerstvo okhorony zdorovia Ukrayiny, hromadianam, reabilitatsiia, aktualna informatsiia z reabilitatsii [Internet]. Aktualna informatsiia z reabilitatsii; [cited 19 Jun. 2025]. (In Ukrainian). Available from: <https://moz.gov.ua/uk/aktualna-informaciya-z-reabilitaciij>.
4. Ministerstvo sotsialnoi polityky, pres-tskntr, novyny [Internet]. Tanasyshyn u shtab-kvartyri OON: V Ukrayini ponad 3 mln liudei z invalidnistiu – tse liudy z velycheznym potentsialom, navychkamy, ideiamy, syloiu; 13 Jun 2024 [cited 18 Jun 2025]. (In Ukrainian). Available from: <https://www.msp.gov.ua/press-center/news/tanasyshyn-u-shtab-kvartyri-oon-v-ukrayini-ponad-3-mln-lyudey-z-invalidnistyu-tse-lyudy-z-velycheznym-potentsialom-navychkamy-ideyamy-syloyu>.
5. Wakeham S, Heung S, Lee J, Sadowski CA. Beyond equality: Providing equitable care for persons with disabilities. *Can Pharm J Rev Pharm Can* [Internet]. Jul. 2017 [cited 19 Jun. 2025]; 150(4): 251–8. Available from: <https://doi.org/10.1177/1715163517710957>.
6. Clemente KA, Silva SV, Vieira GI, Bortoli MC, Toma TS, Ramos VD, Brito CM. Barreiras ao acesso das pessoas com deficiência aos serviços de saúde: uma revisão de escopo. *Rev Saude Publica* [Internet]. 1 Jul 2022 [cited 19 Jun 2025]; 56: 64. Available from: <https://doi.org/10.11606/s1518-8787.2022056003893>.
7. Hromovyk BP, Pankevych OB. The role and place of pharmaceutical security in the national security system. *Odesa Med J* [Internet]. 2024 [cited 19 Jun 2025]; (4): 78–83. (In Ukrainian). Available from: <https://doi.org/10.32782/2226-2008-2024-4-13>.
8. Konfederatsiia robotodavtsiv Ukrayiny, novyny [Internet]. Naibilshe liudei z invalidnistiu zareistrovano u Lvivskii oblasti, a naibilshe pratsiuiut – u Kyevi; 24 Jun 2024 [cited 18 Jun 2025]. (In Ukrainian). Available from: <https://employers.org.ua/news/id2642>.
9. Hromovyk BP, Korolyov MV. The results of the study of pharmacists' opinion regarding the organization of their work in pharmacies during the coronavirus COVID-19 pandemic. *Farmatsevtychnyi Zhurnal* [Internet]. 9 Jul 2020 [cited 19 Jun 2025]; (3): 39–44. (In Ukrainian). Available from: <https://doi.org/10.32352/0367-3057.3.20.04>.
10. Jairoun AA, Al-Hemyari SS, Shahwan M, et al. Access to community pharmacy services for people with disabilities: Barriers, challenges, and opportunities. *Res Soc Adm Pharm* [Internet]. May 2022 [cited 19 Jun 2025]; 18(5): 2711–3. Available from: <https://doi.org/10.1016/j.sapharm.2022.01.009>.
11. Pedelahore M. Accompagnement de la personne handicapée à l'officine : le point de vue des professionnels. *Universite Clermont Auvergne ufr de Pharmacie*. 2020; 85. (In France). Available from: <https://dumas.ccsd.cnrs.fr/dumas-03132634v1/file/PEDELAHORE%20Martin.pdf>.
12. Badr AF. Exploring Barriers Faced by Community Pharmacists in Serving Patients with Disabilities in Saudi Arabia: Recommendations for Enhancing Healthcare Provisions. *Pharmacy* [Internet]. 9 Sep. 2024 [cited 19 Jun. 2025]; 12(5): 137. Available from: <https://doi.org/10.3390/pharmacy12050137>.
13. Walji S, Carroll JC, Haber C. Experiences of patients with a disability in receiving primary health care. *Can Fam* [Internet]. Jul. 2021 [cited 19 Jun. 2025]; 67(7): 517–24. Available from: <https://doi.org/10.46747/cfp.6707517>.
14. Voitko M, Hromovyk B, Oliynyk P. Farmatsevtychnye obsluhovuvannia osib z vadamy slukhu. *Universum* [Internet]. 27, Oct. 2024 [cited 19 Jun. 2025]; (13): 278–84. (In Ukrainian). Available from: <https://archive.liga.science/index.php/universum/article/view/1289>.
15. Pro skhvalennia Natsionalnoi strategii iz stvorennya bezbarierного prostoru v Ukrayini na period do 2030 roku, Rozporiadzhennia Kabinetu Ministriv Ukrayiny № 366-r [Internet], 14 Apr 2021 [cited 19 Jun 2025]. (In Ukrainian). Available from: <https://zakon.rada.gov.ua/laws/show/366-2021-p#Text>.

Надійшла до редакція 05.08.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування aelita.m.krychkovska@lpnu.ua

UDC 615.01.615.272.615.252.319.7

DOI <https://doi.org/10.32782/2226-2008-2025-5-14>N. A. Tsubanova¹ <https://orcid.org/0000-0002-9122-8291>N. I. Voloshchuk² <https://orcid.org/0000-0002-0166-9676>H. B. Halevych² <https://orcid.org/0009-0008-8642-7748>

EFFECT OF TAGETES PATULA L. EXTRACT ON LIVER AND PANCREAS HISTOSTRUCTURE IN MODELS OF ETHANOL-PARACETAMOL- INDUCED HEPATITIS AND STREPTOZOTOCIN-INDUCED DIABETES IN RATS

¹ Communal Institution of Higher Education of Lviv Regional Council

“Andrei Krupynskyi Lviv Medical Academy”, Lviv, Ukraine,

² National Pirogov Memorial Medical University, Vinnytsia, Ukraine

UDC 615.01.615.272.615.252.319.7

N. A. Tsubanova¹, N. I. Voloshchuk², H. B. Halevych²

EFFECT OF TAGETES PATULA L. EXTRACT ON LIVER AND PANCREAS HISTOSTRUCTURE IN MODELS OF ETHANOL-PARACETAMOL HEPATITIS AND STREPTOZOTOCIN DIABETES IN RATS

¹ Communal Institution of Higher Education of Lviv Regional Council “Andrei Krupynskyi Lviv Medical Academy”, Lviv, Ukraine,² National Pirogov Memorial Medical University, Vinnytsia, Ukraine

Drugs are increasingly becoming predictors of the development of liver and pancreatic lesions. Drug-induced lesions are usually characterized by strong oxidative stress and destruction of hepatocyte and pancreatic cell membranes. Modern therapeutic strategies are primarily aimed at reducing clinical symptoms and are not able to exert an organoprotective effect. Medicinal plant raw materials with antioxidant and cytoprotective effects can be considered a promising object for reducing the toxic effect of some drugs on the liver and pancreas.

The purpose of this work was to evaluate the effect of extract herb *Tagetes patula* L (EHTP) on changes in histological parameters under conditions of ethanol-paracetamol hepatitis and streptozotocin diabetes.

Materials and methods. Experimental ethanol-paracetamol hepatitis and streptozotocin diabetes were modeled in rats using standard methods. The investigated EHTP and the reference drug Silymarin were administered at a dose of 25 mg/kg in a therapeutic and prophylactic regimen. Organ samples (liver in the first experiment and pancreas in the second) were fixed in 10% formalin, dehydrated in ascending grades of alcohol, embedded in paraffin. Sections 6–7 µm thick were obtained using a sliding microtome, mounted on glass slides, stained with hematoxylin and eosin.

Results. The EHTP has a noticeable protective effect under the conditions of ethanol-paracetamol hepatitis, which is manifested in a significant reduction in the degree of hydropic and fatty degeneration of hepatocytes, disorders of internal hemodynamics, inflammatory reaction; normalization of the structure and morphological integrity of cells. In the model of streptozotocin diabetes, the EHTP reduces destructively dystrophically altered pancreatic cells and exhibits anti-inflammatory effects, significantly reducing signs of insulitis and inflammatory reaction in the interacinar tissue.

Conclusions. The EHTP has a significant organoprotective effect, with a protective effect on hepatocytes in conditions of ethanol-paracetamol hepatitis and on pancreatic cells in conditions of streptozotocin diabetes.

Keywords: *Tagetes patula* L herb extract, ethanol-paracetamol hepatitis, streptozotocin diabetes, rat, histological examination.

УДК 615.01.615.272.615.252.319.7

Н. А. Цубанова¹, Н. І. Волошчук², Г. Б. Галевич²

ВПЛИВ ЕКСТРАКТУ ТРАВИ *TAGETES PATULA* L. НА ГІСТОСТРУКТУРУ ПЕЧІНКИ ТА ПІДШЛУНКОВОЇ ЗАЛОЗИ НА МОДЕЛЯХ ЕТАНОЛ-ПАРАЦЕТАМОЛОВОГО ГЕПАТИТУ ТА СТРЕПТОЗОТОЦИНОВОГО ДІАБЕТУ В ЩУРІВ

¹ Комунальний заклад вищої освіти Львівської обласної ради «Львівська медична академія імені Андрея Крупинського», Львів, Україна,

² Вінницький національний медичний університет імені М. І. Пирогова, Вінниця, Україна

У роботі оцінено вплив екстракту трави чорнобривців розлогих (*Tagetes patula* L) на гістологічні зміни за умов етанол-парацетамолового гепатиту та стрептозотоцинового діабету. Досліджуваний сухий екстракт трави чорнобривців розлогих (ЕТЧР) та референс-препарат Сілімарин вводили в дозі 25 мг/кг у лікувально-профілактичному режимі. Встановлено, що ЕТЧР чинить помітну захисну дію за умов етанол-парацетамолового гепатиту, зменшує ступінь гідропічної і жирової дистрофії гепатоцитів, розлади внутрішньої гемодинаміки, запальну реакцію; сприяє нормалізації структури і морфологічній цілісності клітин. На моделі стрептозотоцинового діабету ЕТЧР зменшує деструктивно-дистрофічно змінені клітини підшлункової залози проявляє противапальну дію, тобто ЕТЧР чинить виразну органопротекторну дію на печінку за умов етанол-парацетамолового гепатиту та на підшлункову залозу за умов стрептозотоцинового діабету.

Ключові слова: екстракт трави *Tagetes patula* L, етанол-парацетамоловий гепатит, стрептозотоциновий діабет, щури, гістологічні дослідження.

© N. A. Tsubanova, N. I. Voloshchuk et al, 2025

Стаття поширюється на умовах ліцензії

Introduction

The use of any medicinal product (MP) may be associated with the risk of developing adverse drug reactions (ADR), including those critical to a patient's health. Approximately 4% of hospitalizations result from the negative effects of MPs [1]. According to the generally accepted definition, any effect of an MP in therapeutic doses that does not correspond to the intended therapeutic purpose is considered an ADR. That is, any undesirable or unexpected reaction to an MP that usually requires modification/discontinuation of pharmacotherapy and/or additional treatment, any effect of a drug at therapeutic doses that does not meet the goals of treatment is deemed an ADR.

Based on the nature of development, ADRs are classified as pharmacodynamic, toxic, allergic, non-IgE mediated hypersensitivity, idiosyncratic, secondary (e.g., superinfection), withdrawal syndrome, or drug interaction-induced [2, 3].

Based on mechanism of onset, ADRs may be predictable (pharmacodynamic, non-IgE mediated hypersensitivity, toxic, secondary, withdrawal, interaction-related) or unpredictable (allergic, idiosyncratic).

Therapeutic strategies for ADR prevention should primarily target predictable moderate-severity reactions. These ADRs are most often associated with the negative effects of MPs on the liver, kidneys, and pancreas [4–7].

According to Stine J.G. et al., 2017, drug-induced liver injury manifests in various forms of acute and chronic liver disease, characterized by cytolysis syndrome, disturbances in the cytochrome P450 enzyme system, excessive activation of lipid peroxidation (LPO), and hepatocyte destruction [8]. One of the mechanisms of drug-induced liver injury, as reported by Saran C. et al., 2023, involves disruption of bile acid exchange and impairment of hepatic bile acid transporters, which may lead to toxic accumulation of bile acids in hepatocytes and increase susceptibility to MP-induced liver injury [9].

Liver dysfunction manifested by activated lipid peroxidation, impaired pigment metabolism, reduced protein synthesis, and hepatocyte cytolysis is also supported by the findings of Koshurba I. et al., 2022, obtained in rats with D-galactosamine-induced hepatitis – a model that is morphologically and functionally similar to viral hepatitis in humans [10].

Regarding drug-induced pancreatic injury, more than 100 MPs are currently known to induce diabetes mellitus (DM) [11]. According to Sosnowski K. et al., 2022, the destructive impact of MPs on the pancreas represents a heterogeneous group of adverse effects, which, as a result of uncontrolled LPO activation, cause damage to pancreatic cells, leading to intrapancreatic activation of pancreatic enzymes, resulting in drug-induced acute pancreatitis and, in some cases, DM. The diabetogenic effect of MPs, understood as impaired insulin secretion, may arise from direct β -cell destruction, systemic toxicity affecting pancreatic islets and glucose transporters on the cell membrane, induction of a Th1-type autoimmune response, disruption of voltage-gated calcium channels in β -cells, and endoplasmic reticulum stress [12].

Drug-induced damage to the liver and pancreas is marked by pronounced oxidative stress, leading to structural

membrane disruption in hepatocytes and pancreatic acinar cells. Current therapeutic approaches are primarily aimed at reducing clinical symptoms, and the MPs used in such cases do not possess organoprotective properties. There are data on the use of hepatoprotectors based on medicinal plant raw materials, such as milk thistle, to reduce the negative effects of xenobiotics on various organs, especially the liver [13–15].

A promising candidate for reducing the toxic effects of certain MPs on the liver and pancreas is medicinal plant raw material containing various groups of biologically active compounds (BACs), which exert antioxidant and cytoprotective activity and are effective when used in a therapeutic-preventive regimen.

Researchers at Ternopil State Medical University under the leadership of Prof. Marchyshyn S. M. have developed a new dry extract of *Tagetes patula* L. herb (hereinafter EHTP), proposed for investigation as a potential organoprotective agent for therapy of drug-induced lesions, including those of the liver and pancreas.

The aim of this study was to assess the effect of dry extract of *Tagetes patula* L. herb on histological parameters under conditions of ethanol-paracetamol-induced hepatitis and streptozotocin-induced diabetes.

Materials and Methods

Experiments were carried out on male albino non-linear rats weighing 180–220 g. The animals were kept under standard vivarium conditions. The research was conducted according to the National "General Ethical Principles of Animal Experimentation" (Ukraine, 2001), adopted by the V National Congress on Bioethics (Kyiv, 2013), in compliance with the "European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes" (Strasbourg, 1986) and the methodological guidelines of the State Pharmacological Center of the Ministry of Health of Ukraine, "Preclinical Drug Research" (2001). Ethics approval for the study was obtained from the Bioethics Committee of the National Pirogov Memorial Medical University (Vinnytsia) (Protocol No. 11 dated November 18, 2024).

Ethanol-paracetamol hepatitis was induced using a standard method: animals received daily intragastric administration of paracetamol suspension in water at a dose of 500 mg/kg and 1 ml of 40% ethanol (to potentiate the paracetamol effect) for 2 weeks.

According to the research design, animals were divided into groups of 8:

- Group 1: Intact control (received solvents);
- Group 2: Pathology control (no pharmacological correction);
- Groups 3 and 4: received intragastric administration of EHTP at 25 mg/kg (dose established as effective in previous studies [16]) or the comparator drug Silymarin at 25 mg/kg [17] (Darsil tablets, "Pharmaceutical Firm Darnitsa", Ukraine). Dose recalculation from average human therapeutic dose was made considering species sensitivity coefficient [17; 18]. The EHTP and the reference drug Silymarin were ground in a mortar, added with distilled water q.s. to form a suspension, and administered intragastrically.

EHTP and Silymarin were administered 7 days prior to pathology modelling and for 2 weeks during the experimental model induction. For histological analysis, rats were euthanized on the second day after the last paracetamol and ethanol administration.

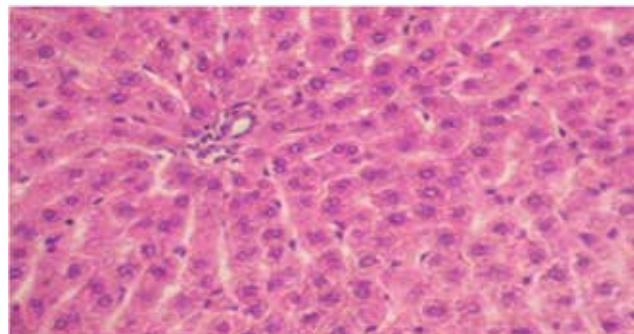
Streptozotocin (STZ)-induced diabetes was modelled via a single intraperitoneal injection of STZ (Sigma, USA) at 55 mg/kg in 5% citrate buffer, pH 4.5, after 14 days of feeding on a high-calorie diet (protein – 20.0%, fat – 60.0%, carbohydrates – 20.0% of total caloric intake) [18]. After STZ injection and until sacrifice, the animals continued receiving the high-calorie diet for 14 more days. DM development was assessed 2 weeks after administration of the diabetogenic agent (STZ).

Groups (n = 8 each):

Group 1: Intact control (received solvents);

Group 2: Pathology control (high-calorie diet for 28 days + STZ on day 14);

Groups 3 and 4: on top of the modelled pathology, animals received EHTP or Silymarin at 25 mg/kg in a therapeutic-preventive regimen – for 2 weeks before and 2 weeks after STZ injection.


The selection of doses for the investigated drugs was based on data from previous studies and the results of recalculating the human dose according to the species sensitivity coefficient.

Organ samples (liver in the first experiment and pancreas in the second) were fixed in 10% formalin, dehydrated in ascending grades of alcohol, embedded in paraffin. Sections 6–7 μm thick were obtained using a sliding microtome, mounted on glass slides, stained with hematoxylin and eosin. Additionally, liver samples fixed in formalin were frozen and sectioned to identify general lipids using Sudan IV staining. Slides were examined under a Granum light microscope and photographed with a Granum DCM 310 digital camera. Images were processed using TouView software.

Research results and their discussion

According to the results of light microscopy, the liver of intact rats exhibited the typical structure characteristic

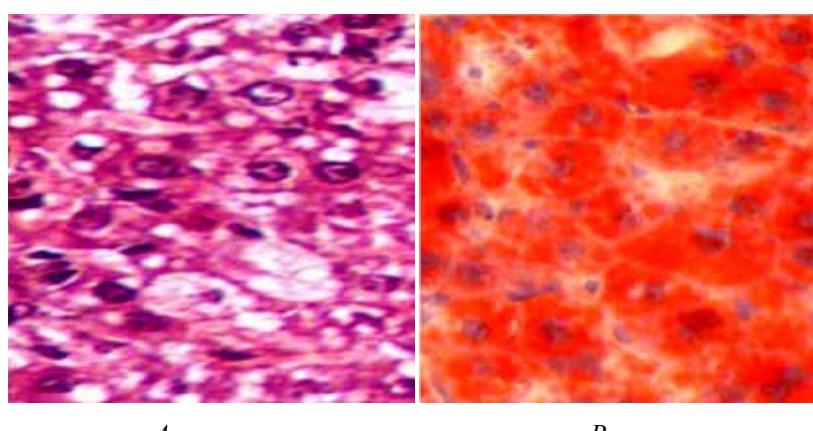

of this animal species. Connective tissue septa between lobules were not prominent. The boundaries of the lobules were defined by triads – portal tracts (areas containing branches of the hepatic artery, portal vein, and bile duct). Hepatocyte cords (hepatic plates) within the lobules showed a clear radial orientation. Hepatocyte nuclei were normochromatic, centrally located, and contained one to two nucleoli. Kupffer cells showed no abnormalities (Fig. 1).

Fig. 1. Liver specimen of an intact rat. Normal condition of hepatocytes, triad area. Hematoxylin-eosin $\times 250$

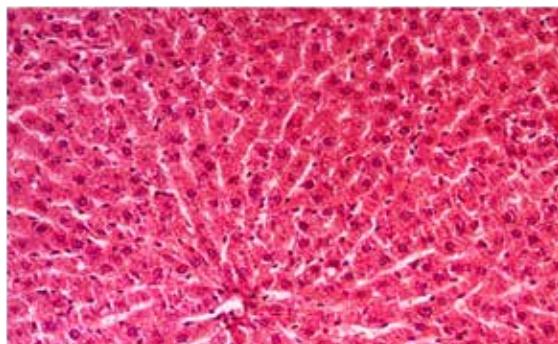
In the liver of rats from the control pathology group with ethanol-paracetamol-induced hepatitis, foci of vacuolar degeneration of hepatocytes were observed, along with necrotic changes in individual cells showing signs of karyopyknosis and plasmopyknosis. In areas of the most pronounced degeneration, disruption of the radial cord architecture was noted; hemocapillaries were compressed, and their lumens were not visible. A significant portion of hepatocytes were hypertrophied. The cytoplasm of the cells was filled with vacuoles of various sizes with irregular contours (hydropic degeneration), as well as medium- to small-sized, sharply demarcated, rounded inclusions (Fig. 2A), which showed a strong positive reaction for lipid (Fig. 2B).

The administration of EHTP at a dose of 25 mg/kg in a prophylactic and therapeutic regimen improved hepatic

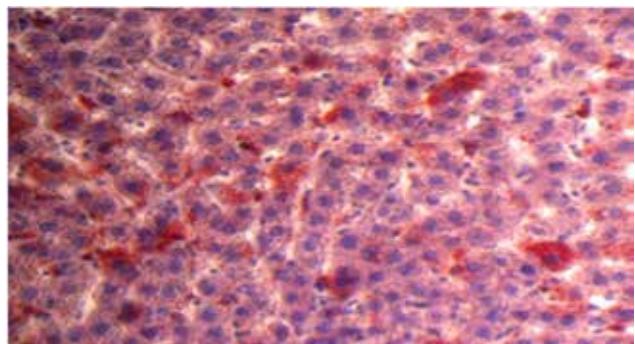
Fig. 2. Liver specimen of a rat with ethanol-paracetamol-induced hepatitis: A – a parenchymal area containing cells whose cytoplasm is filled with both irregularly contoured vacuoles and sharply demarcated rounded inclusions; disruption of the cord architecture is noted. Hematoxylin-eosin $\times 400$; B – Medium- to small-droplet fatty degeneration of hepatocytes. Sudan IV-hematoxylin $\times 250$

parenchymal morphology in rats with ethanol-paracetamol-induced hepatitis. In the majority of lobular zones, the typical architecture was preserved; hemocapillary disturbances were markedly reduced, and signs of inflammation were either absent or residual in nature (Fig. 3).

The organoprotective effect of EHTP on the liver was also confirmed by a marked reduction in fatty degeneration, which was of a small-focal nature, the absence of hepatocyte hypertrophy, and minimal pathological changes in liver cells (Fig. 4).


The comparator drug, Silymarin, under conditions of ethanol-paracetamol-induced hepatitis, was significantly inferior to EHTP. The same administration regimen and dosage of the reference drug Silymarin had virtually no effect on the condition of the hepatic parenchyma in rats compared to the control pathology group. This applies to the severity of fatty degeneration (Fig. 5A), and also to disturbances in local hemodynamics, inflammatory response, and manifestations of intrahepatic cholestasis (Fig. 5B).

Regarding the organoprotective effect on the pancreas, the results of the histological examination are presented in Fig. 6. In intact rats, the exocrine portion of the gland consisted of lobules separated by narrow connective tissue


septa. The parenchyma of the lobules was composed of terminal secretory units (acini) with a very high packing density. The lumens of the acini were very small.

The islets were clearly demarcated from the surrounding exocrine parenchyma and consisted of clusters of light polygonal cells arranged in cords (see Fig. 6). This zonal distribution of alpha and beta cells is typical for this animal species and corresponds to the “mantle” type of islet structure.

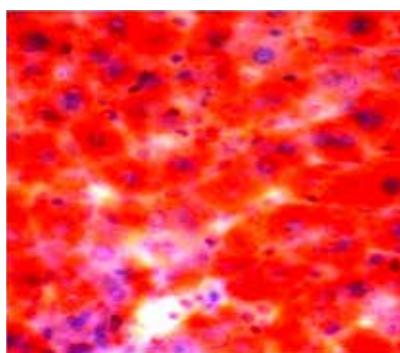

Under conditions of streptozotocin-induced diabetes mellitus in rats of the control pathology group, significant changes were observed in the incretory apparatus. In some islets, a decreased number of beta cells was noted, and the islets themselves acquired ribbon-like and star-shaped forms. Numerous islets of different classes with more typical morphology showed signs of dystrophy (vacuolization) and necrobiotic changes in beta cells, resulting in visibly depleted areas in some cases (up to near-complete loss of cells). At the periphery of certain islets, focal proliferation of alpha cells and lymphohistiocytic infiltration was observed. Excretory ducts of all calibers were somewhat dilated, and clear proliferation of the ductal epithelium was seen (Fig. 7).

Fig. 3. Liver specimen of a rat that received EHTP (25 mg/kg) under conditions of ethanol-paracetamol-induced hepatitis. Normalization of the cord architecture, absence of inflammatory response.
Hematoxylin-eosin $\times 200$

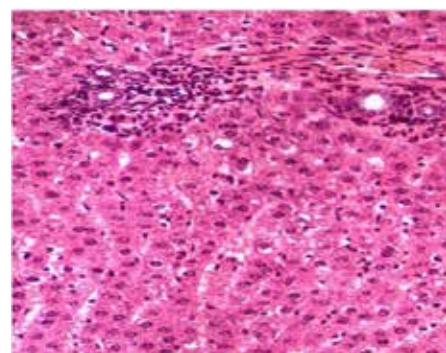
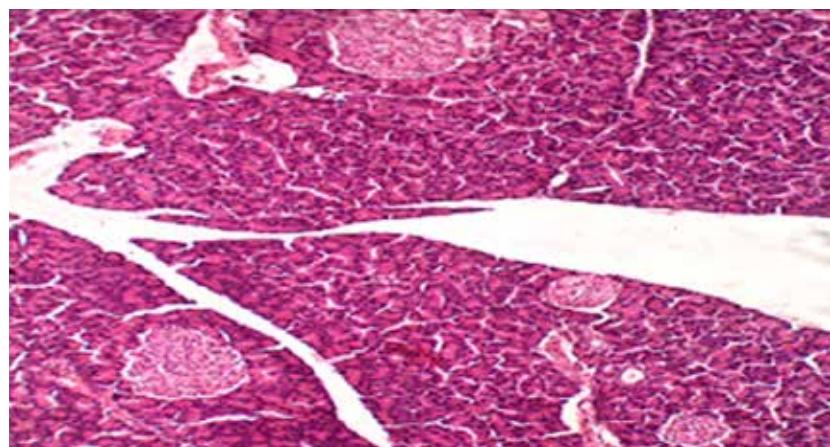
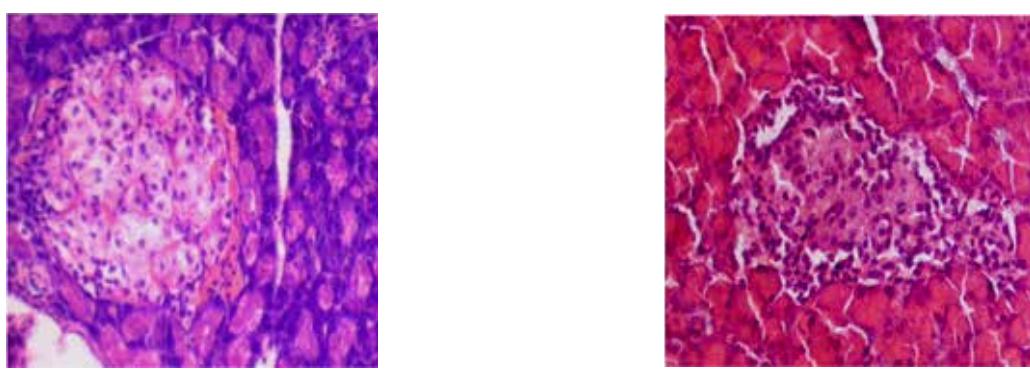


Fig. 4. Liver specimen of a rat that received EHTP (25 mg/kg) under conditions of ethanol-paracetamol-induced hepatitis. Marked reduction of hepatocyte fatty degeneration.
Sudan IV–hematoxylin $\times 250$



A


Fig. 5. Liver specimen of a rat that received Silymarin (25 mg/kg) under conditions of ethanol-paracetamol-induced hepatitis: A – Pronounced fatty degeneration. Sudan IV–hematoxylin $\times 250$; B – Uneven dilation of sinusoidal hemocapillaries, inflammatory response in the portal tract area, ductular proliferation.
Hematoxylin-eosin $\times 200$

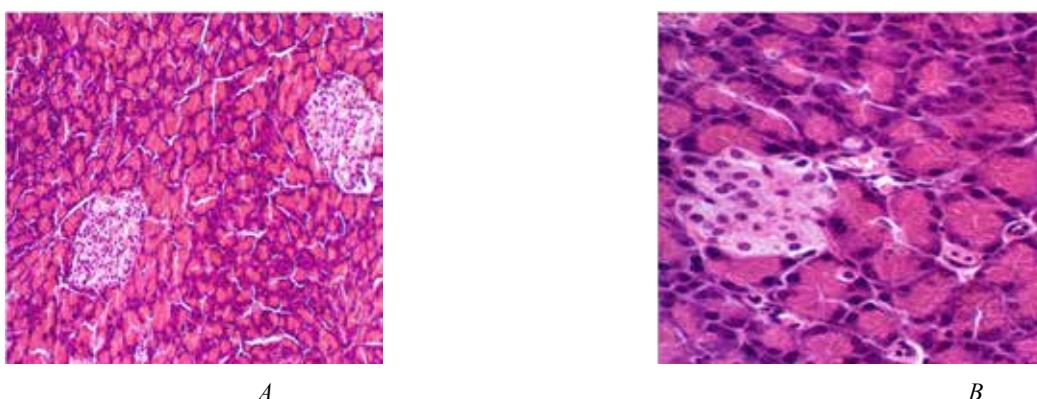
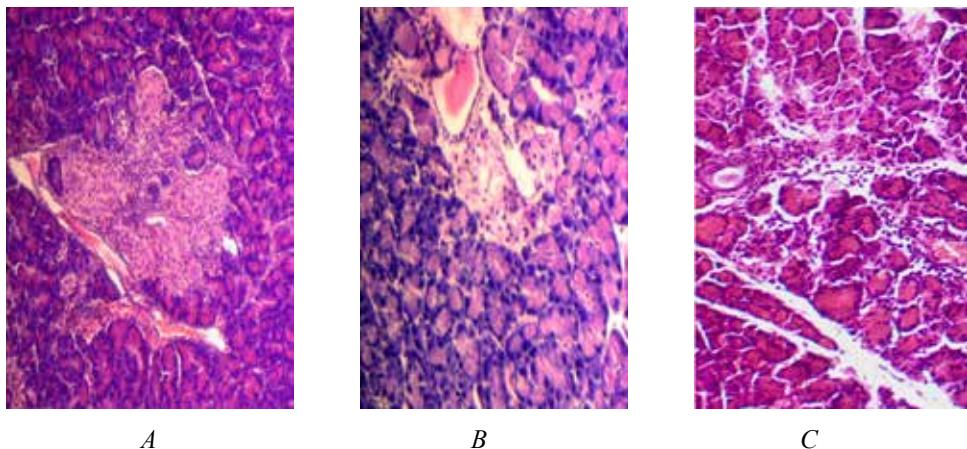

B

Fig. 6. Pancreas of an intact rat. Pancreatic islets of various classes; the condition of acinar pancreatocytes and insulin-producing cells is unaltered. Hematoxylin-eosin $\times 100$

Fig. 7. Pancreas of a rat with streptozotocin-induced diabetes mellitus:
A – Necrobiotic changes in a portion of beta cells with depletion of the pancreatic islet; B – Lymphohistiocytic peri-islet infiltration. Hematoxylin-eosin $\times 250$


Fig. 8. Pancreas of a rat with streptozotocin-induced diabetes mellitus + EHTP administration (25 mg/kg):
A – Increase in visually undamaged pancreatic islets (Hematoxylin-eosin $\times 100$); B – Islet with dystrophic insulin-producing cells without proliferation of alpha and histiocytic cells at the periphery (Hematoxylin-eosin $\times 400$)

The organoprotective effect of EHTP under conditions of drug-induced damage to the pancreas is presented in Fig. 8. Administration of EHTP had a significant positive effect on the condition of the incretory apparatus compared to diabetic control rats, as more pancreatic islets were recorded in the specimens. Insulin-producing cells in many islets did not display dystrophic or destructive changes.

The reduction in islets with depletion of central zones, the improvement in the uniform distribution of cells, and the proliferation of lymphohistiocytic and alpha cells at the periphery (Fig. 8) indicate the protective influence of EHTP on the pancreas. No pancreatic islets showed clearly distorted, atypical shapes or signs of insulitis (inflammation of islets).

The administration of the reference drug Silymarin at a dose of 25 mg/kg in streptozotocin-induced diabetes had a significantly lesser organoprotective effect on the state of the pancreatic islets. Islets with focal proliferation of alpha

cells and lymphocytes in peripheral zones, along with changes in typical shape, were observed. Signs of insulitis and an inflammatory response in the interacinar stroma were also present (Fig. 9).

Fig. 9. Pancreas of a rat with streptozotocin-induced diabetes mellitus + Silymarin administration at a dose of 25 mg/kg: A – Change in the typical shape of the pancreatic islet; B – Vacuolization and destruction of beta cells; C – Proliferation of lymphocytic cells at the periphery of the islet, interacinar inflammatory response. Hematoxylin-eosin $\times 200$ (A, B); Hematoxylin-eosin $\times 100$ (C)

Overall, the results indicate that the prophylactic-therapeutic administration of marigold extract has a noticeable protective effect under conditions of ethanol-paracetamol-induced liver damage, which manifests as a pronounced reduction in the degree of hydropic and fatty degeneration of hepatocytes, disturbances in internal hemodynamics, inflammatory reactions, and normalization of the structure and morphological integrity of liver cells.

In the context of drug-induced pancreatic damage, the marigold herb extract at the investigated dose prevents the development of structural changes in the islet apparatus of rats, enhancing the resistance of insulin-producing cells to the damaging effects of the diabetogenic agent, streptozotocin. Morphologically, this manifests as a reduction in destructively dystrophic changes and an increase in functionally intact insulin-producing cells.

The organoprotective effect of EHTP is likely due to the additive synergy of the main biologically active substances of the extract: hydroxycinnamic acids (5.07%),

flavonoids (7.45%), and tannins (8.68%), which, according to many international studies, exhibit powerful antioxidant, cytoprotective, and consequently organoprotective effects [19; 20].

Conclusions

Under conditions of drug-induced liver damage (ethanol-paracetamol-induced hepatitis) and pancreatic damage (streptozotocin-induced diabetes), the administration of dry marigold herb extract in a therapeutic-prophylactic regimen at a dose of 25 mg/kg exerts a pronounced organoprotective effect, confirmed by the normalization of the morphological parameters of hepatocytes and pancreaticocytes. The *Tagetes patula* L herb extract outperforms the reference drug Silymarin based on the investigated parameters.

Prospects for further research. The *Tagetes patula* L extract is a promising agent for further preclinical studies aimed at creating an effective phytomedicine for the prevention and treatment of liver and pancreatic injuries.

BIBLIOGRAPHY

- Wei BM, Fox LP, Kaffenberger BH, et al. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms. Part I. Epidemiology, pathogenesis, clinicopathological features, and prognosis. *J Am Acad Dermatol*. 2024; 90(5): 885–908. DOI: 10.1016/j.jaad.2023.02.072.
- Dart RC, Mullins ME, Matoushek T, et al. Management of Acetaminophen Poisoning in the US and Canada: A Consensus Statement. *JAMA Netw Open*. 2023; 6(8): e2327739. DOI: 10.1001/jamanetworkopen.2023.27739.
- Turner PJ, Arasi S, Ballmer-Weber B, et al. Global Allergy, Asthma European Network (GA2LEN) Food Allergy Guideline Group. Risk factors for severe reactions in food allergy: Rapid evidence review with meta-analysis. *Allergy*. 2022; 77(9): 2634–2652. DOI: 10.1111/all.15318.
- Katarey D, Verma S. Drug-induced liver injury. *Clin Med (Lond)*. 2016; 16(Suppl 6): s104–s109. DOI: 10.7861/clinmedicine.16-6-s104.
- Bhushan B, Apte U. Liver Regeneration after Acetaminophen Hepatotoxicity: Mechanisms and Therapeutic Opportunities. *Am J Pathol*. 2019; 189(4): 719–729. DOI: 10.1016/j.ajpath.2018.12.006.
- Kwiatkowska E, Domański L, Dziedziejko V, et al. The Mechanism of Drug Nephrotoxicity and the Methods for Preventing Kidney Damage. *Int J Mol Sci*. 2021;22(11):6109. DOI: 10.3390/ijms22116109.

7. Perazella MA. Pharmacology behind Common Drug Nephrotoxicities. *Clin J Am Soc Nephrol.* 2018; 13(12): 1897–1908. DOI: 10.2215/CJN.00150118.
8. Stine JG, Chalasani NP. Drug Hepatotoxicity: Environmental Factors. *Clin Liver Dis.* 2017; 21(1): 103–113. DOI: 10.1016/j.cld.2016.08.008.
9. Saran C, Brouwer KL. Hepatic Bile Acid Transporters and Drug-induced Hepatotoxicity. *Toxicol Pathol.* 2023; 51(7–8): 405–413. DOI: 10.1177/019262332122255.
10. Koshurba I, Chyzh M, Hladkykh F, Belochkina I. Influence of Placenta Cryoextract on the Liver Metabolic and Functional State in Case of D-Galactosamine Hepatitis. *Innovative Biosystems and Bioengineering.* 2022; 6(2): 64–7. DOI: <https://doi.org/10.20535/ibb.2022.6.2.264774>.
11. Jones MR, Hall OM, Kaye AM. Drug-induced acute pancreatitis: a review. *Ochsner J.*, 2015; 15(1): 45–51. PMID: PMC4365846.
12. Sosnowski K, Nehring P, Przybyłkowski A. Pancreas and Adverse Drug Reactions: A Literature Review. *Drug Saf.* 2022; 45(9): 929–939. DOI: 10.1007/s40264-022-01204-0.
13. Wadhwa K, Pahwa R, Kumar M, et al. Mechanistic Insights into the Pharmacological Significance of Silymarin. *Molecules.* 2022; 27(16): 5327. DOI: 10.3390/molecules27165327.
14. Calderon ME., Herrera D, Mogan S, et. al. Impact of Silymarin Supplements on Liver Enzyme Levels: A Systematic Review. *Cureus.* 2023; 15(10): e47608. DOI: 10.7759/cureus.47608.
15. Delmas D, Xiao J, Vejux A. Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and Chemosensitivity. *Molecules.* 2020; 5(9): 2009. DOI: 10.3390/molecules25092009.
16. Marchyshin SM, Halevych HB, Tsubanova NA et al., inventors; I. Horbachevsky Ternopil National Medical University, assignee. Sposib oderzhannya farmakolohichno aktyvnoyi roslynnoyi substantsiyi z travy chornobryvtsiv rozlohykh. [Method for obtaining a pharmacologically active plant substance from the herb Marigold vulgaris] Patent of Ukraine UA 158450. Feb. 2025. 12. 7 p. <https://sis.nipo.gov.ua/uk/search/detail/1841728/>.
17. Tsubanova N, Trutaieva L. Antioxidant and anticytolytic action as the basis of the Pancreo-Plant® hepatoprotective effect in acute liver ischemia. *Ceska Slov Farm.* 2021 Summer; 70(3): 102–108. PMID: 34418947. <https://pubmed.ncbi.nlm.nih.gov/34418947/>.
18. Stefanov OV. Doklinichni doslidzhennia likarskykh zasobiv : metod. rek. [Preclinical research of medicines: methodical recommendations]. Kyiv: Avitsena, 2001; 528 p. [in Ukrainian]
19. Zhu Y, Wang D, Zhou S, Zhou T. Hypoglycemic Effects of Gynura divaricata (L.) DC Polysaccharide and Action Mechanisms via Modulation of Gut Microbiota in Diabetic Mice. *J Agric Food Chem.* 2024; 72(17): 9893–9905. DOI: 10.1021/acs.jafc.4c00626.
20. Di Lorenzo C, Colombo F, Biella S. Polyphenols and Human Health: The Role of Bioavailability. *Nutrients.* 2021; 13(1): 273–278. DOI: 10.3390/nu13010273.

Надійшла до редакція 15.06.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування tsubanova19@gmail.com

Л. В. Еберле^{1,2} <https://orcid.org/0000-0002-3466-8653>
К. Д. Сазонов² <https://orcid.org/0009-0009-6708-3086>
Я. В. Рожковський¹ <https://orcid.org/0000-0002-3650-9701>
С. І. Богату¹ <https://orcid.org/0000-0002-7979-8232>
Б. В. Приступа¹ <https://orcid.org/0000-0002-9100-0860>

ФАРМАКОЛОГІЧНА АКТИВНІСТЬ 2-(ДІЕТИЛАМИНО)ЕТИЛ-4-[(11-ОКСОІНДЕНО[2,1-В]ХІНОКСАЛІН-6-КАРБОНІЛ)АМИНО]БЕНЗОАТУ ЗА ТРАНСДЕРМАЛЬНОГО ЗАСТОСУВАНЯ

¹ Одеський національний медичний університет, Одеса, Україна,

² Одеський національний університет імені І. І. Мечникова, Одеса, Україна

Л. В. Еберле^{1,2}, К. Д. Сазонов², Я. В. Рожковський¹, С. І. Богату¹, Б. В. Приступа¹

ФАРМАКОЛОГІЧНА АКТИВНІСТЬ 2-(ДІЕТИЛАМИНО)ЕТИЛ-4-[(11-ОКСОІНДЕНО[2,1-В]ХІНОКСАЛІН-6-КАРБОНІЛ)АМИНО]БЕНЗОАТУ ЗА ТРАНСДЕРМАЛЬНОГО ЗАСТОСУВАНЯ

¹ Одеський національний медичний університет, Одеса, Україна

² Одеський національний університет імені І. І. Мечникова, Одеса, Україна

У роботі представлено результати дослідження аналгетичної та антиексудативної активності 2-(діетиламіно)етил-4-[(11-оксіндено[2,1-В]хіноксалін-6-карбоніл)аміно]бензоату на моделях термічного, хімічного болю й ексудативного запалення. Досліджено мазі з різними концентраціями діючої речовини (1%, 3% і 5%). Найбільш виражену аналгетичну дію показала 5%-ва мазь, яка сприяла зниженню бальової реакції на 63,8% (у тесті «Гаряча вода») і на 66,5% (у тесті АІТЦ) порівняно з контрольною групою. Антиексудативний ефект із застосуванням 5%-ї мазі був слабко вираженим у випадку зимозанового запалення та не проявлявся за наявності трипсинового запалення. Результати досліджень показали, що отримана сполука є перспективною для створення місцевого аналгетика з комбінованим механізмом дії.

Ключові слова: аналгетична активність, антиексудативна активність, індохінаксолінові похідні, 2-(діетиламіно)етил-4-[(11-оксіндено[2,1-В]хіноксалін-6-карбоніл)аміно]бензоат.

L. V. Eberle^{1,2}, K. D. Sazonov², Ya. V. Rozhkovskyi¹, S. I. Bohatu¹, B. V. Prystupa¹

PHARMACOLOGICAL ACTIVITY OF 2-(DIETHYLAMINO)ETHYL-4-[(11-OXOINDENE[2,1-B]QUINOXALINE-6-CARBONYL)AMINO]BENZOATE DURING TRANSDERMAL APPLICATION

¹ Odesa National Medical University, Odesa, Ukraine,

² Odesa I. I. Mechnikov National University, Odesa, Ukraine

In medical practice, pain syndrome and inflammation are common clinical manifestations that significantly reduce the quality of life of patients. A promising direction of modern pharmacotherapy is the development and search for local dosage forms with analgesic and anti-inflammatory effects.

The aim of this work was to study the analgesic and anti-inflammatory activity of a new compound – 2-(diethylamino)ethyl-4-[(11-oxoindeno[2,1-b]quinoxaline-6-carbonyl)amino]benzoate in the composition of ointments of different concentrations.

The study was conducted on 50 rats and 60 mice, in accordance with the requirements of GLP and ethical standards. The study of analgesic activity was carried out on models of thermal (“hot water”) and chemical (allyl isothiocyanate test) pain. The assessment of anti-inflammatory activity was carried out on models of exudative inflammation induced by trypsin and zymosan.

Research results. According to the results of the study, in the “hot water” test, 5% ointment based on 2-(diethylamino)ethyl-4-[(11-oxoindeno[2,1-b]quinoxaline-6-carbonyl)amino]benzoate provided a significant reduction in pain sensitivity by 63.8%, and in the allyl isothiocyanate test — 88 to 66.5% compared to the control group, which indicates a pronounced analgesic activity of the studied compound. In the model of inflammation induced by zymosan, a moderate anti-exudative effect was established, which was manifested by a decrease in the inflammatory reaction by 27.4%, while in the trypsin model no significant effect was recorded.

Thus, it was established that the studied compound is characterized by pronounced local analgesic activity and limited anti-inflammatory properties, which depend on the type of model. The obtained results indicate the feasibility of further preclinical studies of the drug as a potential local analgesic with a combined mechanism of action.

Keywords: analgesic activity, antiexudative activity, indenoquinoxoline derivatives, 2-(diethylamino)ethyl-4-[(11-oxoindeno[2,1-b]quinoxaline-6-carbonyl)amino]benzoate.

Вступ

У медичній практиці синдром болю та запальні процеси є поширеними клінічними проявами, що розглядаються як комплексні патологічні стани. Вони включають локальну відповідь на ушкодження, нейрофізіологічну передачу та супроводжуються вегетативними й поведінковими реакціями організму.

Актуальність проблеми зумовлена тим, що бальний синдром і запалення істотно знижують якість життя пацієнтів, погіршують психоемоційний стан, ускладнюють перебіг основного захворювання, знижують ефективність лікування й уповільнюють процес відновлення [1–3].

Одним із перспективних напрямів сучасної фармакотерапії є застосування трансдермальних лікарських форм для зменшення бальового синдрому та профілактики запального процесу. Основними перевагами таких засобів є локалізована дія, мінімізація системного впливу та зниження ризику розвитку побічних ефектів, характерних для пероральних і парентеральних препаратів. Рівномірне надходження активної речовини до зони ураження забезпечує стабільний знеболювальний ефект у разі місцевого застосування.

Водночас обмежена кількість ефективних засобів місцевої дії зумовлює потребу в пошуку нових активних речовин. Перспективним є синтез нових хімічних сполук із вираженою аналгетичною та протизапальною активністю, які можуть бути подібні за структурою до відомих фармакологічних агентів або мати нові механізми дії, що дасть можливість досягти ефективної терапії з мінімальним ризиком побічних ефектів.

Індохінаксолінові похідні є перспективними синтетичними біологічно-активними речовинами, що мають широкий спектр фізіологічної дії [4; 5], проте їх анальгетична активність практично не досліджена. 2-(Діетиламіно)етил-4-[(11-оксоіндео[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоат – новий амід індохінаксолінового ряду, який був синтезований взаємодією індохінаксолін-6-карбонової кислоти з новокайном [6] (рис. 1).

Наявність у його структурі одночасно декількох анестезіоформних груп як в індохінаксоліновому фрагменті (амідна група), так і в новокайні (естерна група) можуть привести до стійкого аналгетичного ефекту цієї сполуки [7; 8].

Тому **метою роботи** було дослідження фармакологічної активності 2-(діетиламіно)етил-4-

[(11-оксоіндео[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоату на різних моделях болю та запалення.

Матеріали та методи дослідження

Дослідження проводили на 50 нелінійних білих щурах масою 180–200 г та 60 білих мишах масою 18–22 г, вирощених у розпліднику віварію Одеського національного медичного університету на стандартному раціоні згідно із санітарно-гігієнічними нормами та вимогами GLP [9; 10].

Для дослідження аналгетичної активності 2-(діетиламіно)етил-4-[(11-оксоіндео[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоату були виготовлені мазі різних концентрацій (1%, 3%, 5%) для трансдермального нанесення в дозі 50 мг/см² на поверхні кінцівок тварин. Як мазеву основу використовували поліетиленгліколь-1500, поліетиленоксид-400, 1,2-пропіленгліколь у співвідношенні 4:2:3 відповідно.

Для дослідження аналгетичної активності було вибрано тести «Гаряча вода» та «Алілізотіоціанатний» (АІТЦ). [11].

Тест «Гаряча вода». Під час оцінки аналгетичної активності мазей бальний подразник створювали шляхом занурення хвоста щура у воду з температурою 53 °C. Фіксували час до реакції висмикування хвоста твариною, який слугував латентним періодом бальового відгуку. Показником наявності аналгетичного ефекту вважали статистично значуще подовження цього латентного періоду після застосування мазі [11–13].

Тест АІТЦ. Оцінка аналгетичної активності мазей проводилася шляхом субплантарного введення 20 мкл 0,5%-го розчину АІТЦ, розчиненого в 1,2-пропіленгліколі. Після ін’екції флогогена тварину поміщали у прозорий контейнер для спостереження. Протягом 5 хв фіксували час, упродовж якого тварина облизувала уражену кінцівку [14; 15]. Мазі різних концентрацій наносили на шкіру тварин за 15, 30 та 60 хв до початку тестування моделей термічного та (або) хімічного болю. Для оцінки аналгетичної активності як референтний препарат використовували 2%-ву мазь анестезину.

Антиексудативну активність досліджуваної сполуки оцінювали на експериментальних моделях запалення, індукованого трипсином і зимозаном, відповідно до загальноприйнятих методик [15]. На основі вимірювання об’єму уражених кінцівок тварин розраховували приріст об’єму (ПО) та рівень антиексудативної актив-

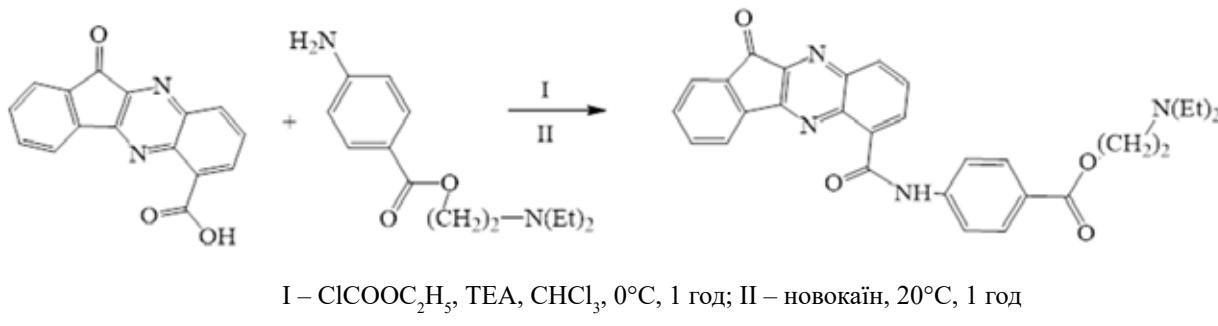


Рис. 1. Схема синтезу 2-(діетиламіно)етил-4-[(11-оксоіндео[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоату

ності (АА) у дослідних групах порівняно з контролем [13]. Як препарат порівняння застосовували 5%-ву мазь ібупрофену (Долгіт® крем, виробник – Dolorgiet GmbH & Co. KG (Німеччина), серія UA/4117/01/01).

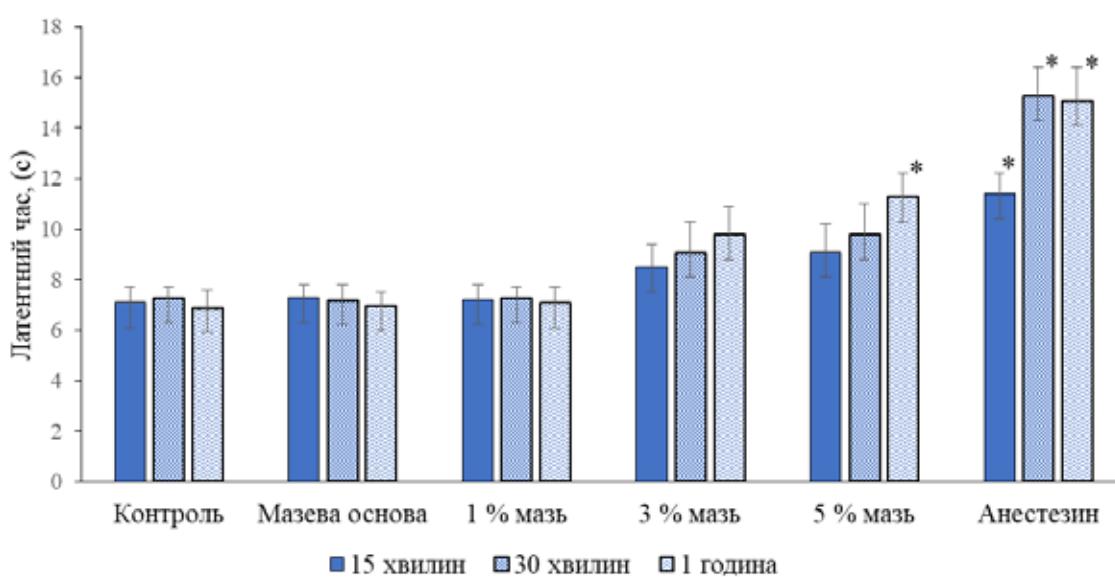
Усі експерименти проводилися відповідно до загальних етических принципів експериментів на тваринах, регламентованих положеннями «Європейської конвенції про захист хребетних тварин, які використовуються для експериментальних та інших наукових цілей» та Законом України № 249 від 01.03.2012 «Порядок проведення науковими установами дослідів, експериментів на тваринах» (протокол № 1 від 26 серпня 2024 р. засідання комісії з біоетики ОНУ імені І. І. Мечникова) [16].

Отримані дані статистично оброблені за допомогою Microsoft Excel і пакета програм Statistica 6,0 (StatSoftInc., США). Визначали нормальність розподілу, використовуючи критерій W Шапіро – Уілка. У разі нормального розподілу варіантів використовували дисперсійний аналіз ANOVA. Результати наведено у вигляді $M \pm m$ (середнє значення \pm стандартна похибка), що відповідає загальноприйнятим вимогам статистичного представлення даних. Відмінності вважалися статистично значущими з $p < 0,05$.

Результати дослідження та їх обговорення

У межах експериментального дослідження було здійснено оцінку аналгетичних властивостей сполуки 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-b]хіноксалін-6-карбоніл)аміно]бензоату, з використанням двох типів моделей болю: термічної та хімічної. Метою цього етапу стало вивчення ефективності різних концентрацій досліджуваної сполуки у формі мазі та встановлення залежності між тривалістю експозиції та вираженістю знеболювального ефекту.

Модель термічного подразнення є одним із ключових експериментальних підходів, що широко застосо-


вуються для вивчення потенційної аналгетичної активності фармакологічних засобів в умовах лабораторного дослідження. Зокрема, методика «гарячої води» базується на фіксації зворотних реакцій тварини на ноцицептивний стимул, що виникає внаслідок активації центральної ноцицептивної системи. У такій моделі аналгезія досягається шляхом гальмування або блокування передачі болювого імпульсу на рівні центральної нервової системи, що дає змогу оцінити ефективність досліджуваних речовин або препаратів [17–18].

Результати дослідження показали, що не всі протестовані концентрації забезпечують статистично значуще пригнічення болювової чутливості у лабораторних тварин. Загалом вираженість знеболювального ефекту досліджуваних мазей залежала як від концентрації активної речовини, так і від часу попередньої аплікації препарату на шкірну поверхню до моменту проведення тесту. Чим довшою була експозиція мазі, тим вищим виявлявся рівень знеболення.

Найвищу ефективність показала мазь із концентрацією 5%, яку наносили на кінцівки тварин за 60 хв до початку дослідження. У цій групі тварин спостерігалося достовірне зниження болювої реакції на 63,8% порівняно з контрольною групою ($p < 0,05$), що свідчить про високий рівень аналгезії (рис. 1).

У групі, яка отримувала аплікацію 3%-ї мазі, ефект був менш вираженим – болюва чутливість зменшувалась на 42 %, що також було статистично значущим, але нижчим за ефективність 5%-ї мазі. Натомість у тварин, яким наносили 1%-ву мазь, достовірного знеболювального ефекту зафіксовано не було. Аналогічний результат спостерігався і в групі, де застосовували мазеву основу без активної речовини – вона не проявляла жодних аналгетичних властивостей та результати збігалися з показниками контрольної групи (рис. 2).

Таким чином, результати проведеного дослідження свідчать про наявність аналгетичних властивостей

Рис. 2. Оцінка знеболювального ефекту мазей різної концентрації з 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-b]хіноксалін-6-карбоніл)аміно]бензоату в тесті «Гаряча вода»

Примітка: * – зміни достовірні порівняно з контрольною групою тварин ($p < 0,05$)

у сполуки 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-b]хіноксалін-6-карбоніл)аміно]бензоату. Найбільш помітний знеболювальний ефект був зафікований із застосуванням 5%-ї мазі, що вказує на перспективність цієї концентрації для подальших до клінічних досліджень.

З метою поглибленого вивчення механізмів фармакологічної дії 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-b]хіноксалін-6-карбоніл)аміно]бензоату проведено комплексне дослідження його аналгетичного потенціалу із застосуванням тесту АІТЦ – моделі, що імітує хімічно індукований біль. Дослідження були спрямовані на оцінку антиноцицептивних властивостей мазей, зокрема в контексті блокування периферичних сенсорних рецепторів болю, з акцентом на TRPV1-рецептори, чутливі до термічних і хімічних подразників [19–20].

Результати експериментів вказують, що аплікація препарату за 60 хв до введення АІТЦ сприяла значному зменшенню активності вісцеральних ноцицепторів. Це проявлялося у зниженні тривалості бальової реакції, зокрема часу, протягом якого піддослідні тварини демонстрували поведінкові ознаки болю (облизування задніх кінцівок). Цей ефект спостерігали практично в усіх експериментальних групах, за винятком групи, де застосовувалася 1%-ва мазь та мазева основа, яка не виявила статистично значущого знеболювального ефекту (рис. 3).

Найвищий ступінь аналгезії було зафіковано в групі, де використовувалася мазь із вмістом активної речовини 5%. При аплікації за одну годину до стимуляції хімічним агентом латентний час реакції зменшувався до 56,8 с, що свідчить про зменшення бальового синдрому у тварин на 66,5% порівняно з показниками контрольної групи. Попри суттєве зниження бальової чутливості, ефективність 5%-ї мазі дещо поступалася за потужністю порівняльному препарату – анестезину,

який демонстрував більш виражений ефект зі зниженням латентного часу до 44,3 с (51,9% порівняно з контролем). Отже, досліджувана сполука проявляє помірну, дозозалежну антиноцицептивну активність із максимальною ефективністю в разі використання мазі з концентрацією 5% (рис. 3).

На наступному етапі роботи було проведено оцінку протизапального активності 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-b]хіноксалін-6-карбоніл)аміно]бензоату на моделях ексудативного запалення, зокрема зимозанового та трипсинового. У дослідження було включено лише 5%-ву мазь, яка продемонструвала найвищу аналгетичну активність.

На моделі запалення, індукованого зимозаном, в усіх досліджуваних групах спостерігалося поступове зменшення об'єму запальної інфільтрації протягом 24-годинного періоду спостереження.

Аплікація 5%-ї мазі, що містить 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-b]хіноксалін-6-карбоніл)аміно]бензоат, привела до зниження осередку запалення у тварин на 27,4% порівняно з контрольною групою на завершальному етапі дослідження, тобто на 24 год. Це свідчить про наявність помірної антиексудативної активності дослідного препарату. Водночас референтний препарат (Долгіт® крем) продемонстрував значно вищу ефективність із достовірним пригніченням запального реакції на 58,9% ($p < 0,05$) (табл. 1).

З огляду на отримані результати доцільним є подальше вивчення 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-b]хіноксалін-6-карбоніл)аміно]бензоат з підвищеними концентраціями активної речовини в мазі, що потенційно може посилити антиексудативний ефект і покращити протизапальну активність препарату.

На моделі запалення, індукованого трипсином, застосування 5%-ї мазі на основі досліджуваної сполуки не супроводжувалося жодними статистично зна-

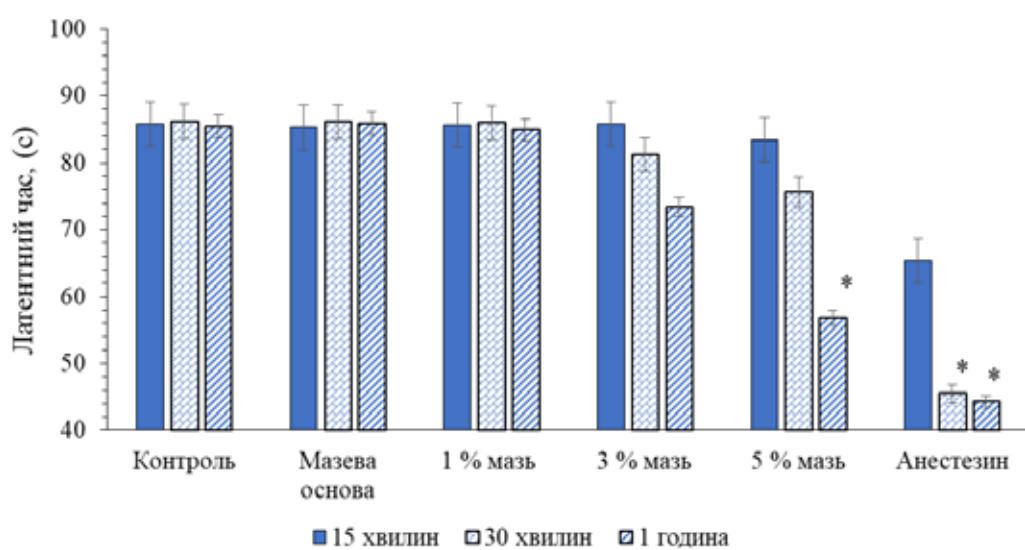


Рис. 3. Оцінка знеболювального потенціалу 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-b]хіноксалін-6-карбоніл)аміно]бензоату на моделі хімічного болю, індукованого АІТЦ

Примітка: * – зміни достовірні порівняно з контрольною групою тварин ($p < 0,05$).

Таблиця 1

Антиексудативна активність 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоату на моделі зимозанового запалення

№	Групи	Час спостереження (год)			
		1	6	12	24
<i>Приріст об'єму, у % до вихідних значень</i>					
1	Контроль	84,1 ± 6,2	69,5 ± 5,9	56,2 ± 5,3	43,1 ± 3,5
2	Мазь 5%	83,8 ± 7,5	68,1 ± 7,3	55,7 ± 6,8	31,6 ± 2,8
3	Долгіт крем	74,8 ± 6,3	54,2 ± 3,7	42,3 ± 5,2	14,8 ± 1,1*
<i>Антиексудативна активність в % до контролю</i>					
	Мазь 5%	—	—	—	27,4 ± 3,5
	Долгіт крем	9,6 ± 1,1	14,5 ± 1,6	13,8 ± 1,5	58,9 ± 4,7*

Примітка: * – статистично значуща різниця порівняно з контрольною групою ($p < 0,05$).

чущими змінами об'єму запальної інфільтрації у шурів порівняно з контрольною групою на жодному з етапів спостереження.

Отримані результати свідчать (табл. 2) про відсутність антиексудативної активності дослідного зразка в умовах цієї моделі запалення.

Таблиця 2

Антиексудативна активність 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоату на моделі трипсинового запалення

№	Групи	Час спостереження (год)			
		1	6	12	24
<i>Приріст об'єму, у % до вихідних значень</i>					
1	Контроль	40,2 ± 3,7	36,5 ± 3,3	31,8 ± 3,3	23,8 ± 2,5
2	Мазь 5%	40,9 ± 4,2	38,4 ± 2,6	32,7 ± 2,9	24,1 ± 2,8
3	Долгіт крем	39,7 ± 3,4	26,1 ± 3,2	16,8 ± 1,4*	5,7 ± 0,4*
<i>Антиексудативна активність в % до контролю</i>					
	Мазь 5%	—	—	—	—
	Долгіт крем	—	29,3 ± 3,7	46,8 ± 5,4	72,6 ± 6,7*

Примітка: * – статистично значуща різниця порівняно з контрольною групою ($p < 0,05$).

Таким чином, отримані результати досліджень демонструють, що 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоат у складі 5%-ї мазі характеризується вираженою аналгетичною активністю, яка проявляється у дозо- та часозалежній формі, з максимальним ефектом при аплікації за 60 хв до бальової стимуляції. Водночас протизапальні властивості досліджуваної сполуки були незначними, що вказує на обмежену ефективність її дії щодо регуляції запального процесу. З огляду на переважно зневолювальний профіль дії ця сполука становить інтерес для подальших доклінічних досліджень як потенційний місцевий аналгетик із комбінованим центральним і периферичним механізмом дії.

Висновки

1. Встановлено, що 5%-ва мазь з 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоату проявляє виражені аналгетичні властивості в разі трансдермального нанесення.

2. Показано, що 5%-ва мазь з 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоату зменшує передачу бальового імпульсу центральною ноцицептивною системою та частково блокує периферичні ноцицептори, зокрема TRPV1-рецептори, що підтверджено на моделях термічного та хімічного болю.

3. Отримані результати свідчать про доцільність подальших досліджень 2-(діетиламіно)етил-4-[(11-оксоіндено[2,1-*b*]хіноксалін-6-карбоніл)аміно]бензоату для встановлення тривалості та стабільності аналгетичного ефекту із збільшенням концентрації мазі та дослідження механізмів дії на молекулярному рівні.

4. Встановлено, що 5%-ва мазь з досліджуваною сполукою виявляє помірну антиексудативну активність у зимозан-індукованому запаленні, тоді як у трипсинової моделі протизапальна дія не спостерігалася, що свідчить про обмежений вплив сполуки на різні типи запалення.

ЛІТЕРАТУРА

- Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. *Lancet*. 2021; 397: 2082–2097. [https://doi.org/10.1016/s0140-6736\(21\)00393-7](https://doi.org/10.1016/s0140-6736(21)00393-7).
- Wilson JM, Schreiber KL, Mackey S, et al. Increased pain catastrophizing longitudinally predicts worsened pain severity and interference in patients with chronic pain and cancer: A collaborative health outcomes information registry study. *Psychooncology*. 2022 Aug; 31(10): 1753–1761. <https://doi.org/10.1002/pon.6020>.

3. Tom AA, Rajkumar E, John R, George AJ. Determinants of quality of life in individuals with chronic low back pain: a systematic review. *Health Psychology and Behavioral Medicine*. 2022 Feb; 10(1): 124–144. DOI: 10.1080/21642850.2021.2022487.
4. Abd El Salam HA, El-Bendary MA, Ibrahim M, El-Samahy FA. Synthesis, Molecular Modeling and Biological Evaluation of Indeno[1,2-b]quinoxaline Derivatives as Antifungal and Antibacterial Agents. *Egyptian Journal of Chemistry*. 2020; 63(7): 2577–2590. <https://doi.org/10.21608/ejchem.2020.21366.2275>.
5. Eldeken GA, El-Samahy FA, Zayed, EM, Osman FH, Elgemeie GE. Synthesis, Biological Activities and Molecular Docking Analysis of a Novel Series of 11H-Indeno[1,2-b]quinoxalin-11-one Derivatives. *J. Mol. Struct.* 2022 Aug; 1261: 132929. <https://doi.org/10.1016/j.molstruc.2022.132929>.
6. Sazonov KD, Ishkov YuV, Shevchenko OV. Synthesis of new derivatives of indenoquinoxalinecarboxylic acids with amines and in silico prediction of their biological activity. *Visnyk Odeskoho natsionalnoho universytetu. Khimiia*. 2024; 1(87): 91–98. <https://doi.org/10.32434/0321-4095-2024-157-6-40-46>.
7. Demchenko SA, Fedchenkova YA, Tsyhankov SA, et al. The synthesis, analgesic and anti-inflammatory activity of 3-aryl(hetaryl)-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)-acrylonitrile derivatives. *Journal of Organic and Pharmaceutical Chemistry*. 2020; 18(2): 32–39. <https://doi.org/10.24959/opchj.20.193511>.
8. Zygmunt M, Ślusarczyk M, Jankowska A, et al. Evaluation of analgesic and anti-inflammatory activity of purine-2,6-dione-based TRPA1 antagonists with PDE4/7 inhibitory activity. *Pharmacological Reports*. 2022; 74(5): 982–997. <https://doi.org/10.1007/s43440-022-00397-6>.
9. Zakon Ukrayny “Pro zakhyst tvaryn vid zhorstokoho povodzhennia” [Law of Ukraine “On Protection of Animals from Cruelty”] vid 21.02.2017 № 2229-VIII. Vidomosti Verkhovnoi Rady Ukrayny. 2017; № 24: 131. (In Ukrainian). <https://zakon.rada.gov.ua/laws/show/3447-15>.
10. Percie du Sert N, Hurst V, Ahluwalia A, et al. ARRIVE Guidelines 2.0: Updated guidelines for reporting animal research. *PLOS Biology*. 2020; 18(7): e3000410. <https://doi.org/10.1371/journal.pbio.3000410>.
11. Eberle LV, Kobernik AO, Kravchenko IA. Analhetichna aktyvnist hustoho ekstraktu imbyru (Zingiber officinale). *Zhurnal Aktualni problemy transportnoi medytsyny*. 2017; 4(50): 120–125. (In Ukrainian). <https://www.researchgate.net/publication/325825281>.
12. Pakale PV, Khanwelkar C, Thorat V, Jadhav S, Tiwari DD. Study of the Analgesic Activity of the Aqueous and Methanolic Extracts of Fresh Rhizome of Zingiber officinale in Wistar Rats. *Cureus*. 2024; 16(11): e74219. <https://doi.org/10.7759/cureus.74219>.
13. Nefyodov OO, Eberle LV, Tsisak AO, et al. Evaluation of the antinociceptive and antiexudative effects of a complex herbal preparation in the therapy of somatic pain and inflammation of various genesis. *World of Medicine and Biology*. 2023; 3(85): 224–229. <http://dx.doi.org/10.26724/2079-8334-2023-3-85-224-229>.
14. Aleksandrova AI, Hrytsuk OI, Eberle LV, Radayeva IM, Ustyanska OV, Tsisak AO. Protyzapalna ta analhetichna diia mazi, yaka mistyt karotynoidy heksanovoho ekstraktu *Cladophora aegagropila*. *Visnyk Vinnytskoho natsionalnoho medychnoho universytetu*. 2024; 28(1): 17–22. (In Ukrainian). [https://doi.org/10.31393/reports-vnmedical-2024-28\(1\)-03](https://doi.org/10.31393/reports-vnmedical-2024-28(1)-03).
15. Stefanov OV. Doklinichni doslidzhennia likarskykh zasobiv: metodychni rekomendatsii. [Preclinical research of medicines: method. Recommendations]. Kyiv: Avytsena; 2001. 528 p. (in Ukrainian). <https://zenodo.org/records/8139960>.
16. Zakon Ukrayny “Pro zakhyst tvaryn vid zhorstokoho povodzhennia” vid 21 liutoho 2006 roku № 3447-IV. *Vidomosti Verkhovnoi Rady Ukrayny*. 2006; 27: St. 230. (In Ukrainian). <https://npu.gov.ua/acts/pro-zahist-tvarin-vid-zhorstokogo-povodzhennya>.
17. Le Bars D, Gozariu M, Cadden SW. Animal models of nociception. *Pharmacological Reviews*. 2001; 53(4): 597–652. <https://doi.org/10.1124/pr.53.4.597>.
18. Singh D, Parle M, Dhingra S. Evaluation of the analgesic effect of morphine on models of acute nociceptive pain in rats with a central noradrenergic system lesion. *Pharmacology Biochemistry and Behavior*. 2016; 150–151: 42–48. <https://doi.org/10.1016/j.pbb.2016.08.001>.
19. Guerrero-Alba R, Méndez-Díaz M. Animal models to study nociception induced by chemical irritants acting on TRP channels: An overview. *Frontiers in Pharmacology*. 2020; 11: 575250. <https://doi.org/10.3389/fphar.2020.575250>.
20. Salat K, Filipek B. Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice. *Journal of Zhejiang University Science B*. 2015; 16(3): 167–178. <https://doi.org/10.1631/jzus.B1400189>.

Надійшла до редакція 05.08.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування lidaeberle@gmail.com

L. V. Slobodianiuk¹ <https://orcid.org/0000-0002-0400-1305>

S. M. Marchyshyn¹ <https://orcid.org/0000-0001-9585-1251>

O. M. Horoshko² <https://orcid.org/0000-0002-1341-3010>

L. V. Kostyshyn² <https://orcid.org/0000-0002-5467-6714>

L. I. Budniak¹ <https://orcid.org/0000-0002-4869-1344>

THE STUDY OF FATTY ACID COMPOSITION IN RUMEX PATIENTIA L. × RUMEX TIANSHANICUS LOSINSK

¹ Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine, Ternopil, Ukraine,

² Bukovinian State Medical University, Chernivtsi, Ukraine

UDC 615.322.07:581.192.2:547.29:582.664.3/.665.4:575.222.7

L. V. Slobodianiuk¹, S. M. Marchyshyn¹, O. M. Horoshko², L. V. Kostyshyn², L. I. Budniak¹

THE STUDY OF FATTY ACID COMPOSITION IN RUMEX PATIENTIA L. × RUMEX TIANSHANICUS LOSINSK

¹ Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine, Ternopil, Ukraine,

² Bukovinian State Medical University, Chernivtsi, Ukraine

Introduction. *Rumex patientia L. × Rumex tianschanicus Losinsk.* is a multifunctional plant valued for its use as forage, food, vegetable, and medicinal resource. It provides a rich source of plant-derived nutrients, including high-quality protein, essential macro- and micronutrients, vitamins, organic acids, lipids, amino acids, and carotenoids. Therefore, an in-depth phytochemical study of all organs of this plant is relevant. The aim of our study was to conduct a comparative analysis of the content of fatty acids in the leaves, flowers, roots, and seeds of *Rumex patientia L. × Rumex tianschanicus Losinsk.*

Materials and methods. The material for the research was the leaves, roots, seeds and flowers of *Rumex patientia L. × Rumex tianschanicus Losinsk.* Identification and quantitative content of fatty acids in the studied medicinal plant raw materials was carried out by gas chromatography / mass spectrometry (GC/ MS) of fatty acid methyl esters using the Agilent 6890N/5973inert gas chromatography-mass spectrometry system (Agilent technologies, USA).

Results. Some 15 fatty acids have been identified in *Rumex patientia L. × Rumex tianschanicus Losinsk.* roots, leaves, flowers, and seeds, and their quantitative content has been determined by gas chromatography. Accordingly, in all samples of *Rumex patientia L. × Rumex tianschanicus Losinsk.*, unsaturated fatty acids dominated. Oleic acid was the dominant unsaturated fatty acid in the flowers and seeds, while α -linolenic acid was predominant in the roots. The highest content of oleic acid (7947.51 μ g/g) was found in the seeds, while that of linoleic acid (1507.01 μ g/g) was found in the flowers.

Conclusion. The performed study on the fatty acid composition of *Rumex patientia L. × Rumex tianschanicus Losinsk.* did not reveal any substantial differences in qualitative composition and quantitative content of fatty acids across different plant parts. The results have shown that unsaturated fatty acids prevailed in the roots, leaves, flowers, and seeds.

Keywords: *Rumex patientia L. × Rumex tianschanicus Losinsk.*, fatty acids, gas chromatography/mass spectrometry.

УДК 615.322.07:581.192.2:547.29:582.664.3/.665.4:575.222.7

Л. В. Слободянюк¹, С. М. Марчишин¹, О. М. Горошко², Л. В. Костишин², Л. І. Будняк¹

ДОСЛІДЖЕННЯ ЖИРНОКИСЛОТНОГО СКЛАДУ У RUMEX PATIENTIA L. × RUMEX TIANSHANICUS LOSINSK

¹ Тернопільський національний медичний університет імені І. Я. Горбачевського Міністерства охорони здоров'я України, Тернопіль, Україна,

² Буковинський державний медичний університет, Чернівці, Україна

Метою дослідження було встановлення якісного складу та кількісного вмісту жирних кислот у *Rumex patientia L. × Rumex tianschanicus Losinsk.* (щавнату) методом газової хромато-мас-спектрометрії (ГХ/МС).

Об'єктами досліджень були квітки та листки щавнату, заготовлені у фазі початку цвітіння, корені – восени після відмірання надземної частини, а насіння – у фазі повної стиглості на дослідних ділянках Національного ботанічного саду імені М. М. Гришка НАН України у 2023 році. Методом ГХ/МС встановлювали якісний склад і визначали кількісний вміст індивідуальних жирних кислот.

У досліджуваний сировині щавнату було ідентифіковано 15 жирних кислот. У всіх зразках *Rumex patientia L. × Rumex tianschanicus Losinsk.* переважали ненасичені жирні кислоти. Олеїнова кислота була домінуючою у квітах та насінні, α -ліноленова – переважала в коренях. Найвищий вміст олеїнової кислоти (7947,51 мкг/г) було виявлено в насінні, лінолевої (1507,01 мкг/г) – у квітах.

Ключові слова: *Rumex patientia L. × Rumex tianschanicus Losinsk.*, жирні олії, газова хромато-мас-спектрометрія.

Introduction

Preservation and enrichment of genetic resources in useful plants, as well as increasing the biotic diversity of cultural phytocenoses through introduction and selection, are among the main tasks of botanical gardens. Comprehensive introduction and breeding studies should be conducted primarily with species that are of high national and economic value [1; 2]. These include species of the genus *Rumex* L. [3].

Plants from the *Rumex* genus have traditionally been used as astringents in the treatment of skin conditions. In veterinary practice, aqueous extracts derived from the fruits and roots of certain *Rumex* species have demonstrated anti-inflammatory and wound-healing properties [4; 5]. The rich diversity of biologically active compounds found in various *Rumex* species and their therapeutic effects underscore the importance of continued scientific investigation. In many *Rumex* types, the polyphenolic profile predominantly includes anthraquinones, flavonoids and their glycosidic forms, as well as tannins [6; 7].

Edible grass (*Rumex patientia* L. × *Rumex tianschanicus* Losinsk.) is a perennial plant developed in China through conventional breeding methods. This newly introduced type of sour grass, known as "edible grass", was obtained by hybridizing the *Rumex* K-1 cultivar with the wild species *Rumex patientia* L. On October 13, 2021, it was officially recognized as a novel food ingredient by the National Health Commission of China [8].

Rumex patientia L. × *Rumex tianschanicus* Losinsk. is a multifunctional plant valued as forage, food, vegetable, and medicinal resource. Additionally, it serves as a significant bioenergy crop, with its biomass utilized in the production of bio-oil, bioethanol, biogas, and solid biofuels [9]. Edible grass is known for its pleasant taste and suitability for dietary use [10]. It provides a rich source of plant-derived nutrients, including high-quality protein, essential macro- and micronutrients, vitamins, organic acids, lipids, amino acids, carotenoids, and fatty acids, along with a notable energy value. Among its most beneficial components are the elevated levels of ascorbic acid and carotene found in the leaves.

Despite its potential, limited research has been conducted on the biologically active compounds found in *Rumex patientia* L. × *Rumex tianschanicus* Losinsk., and its fatty acid profile has yet to be examined. As a result, investigating the fatty acid composition of this edible grass hybrid holds significant practical value.

The aim of the study. The study aimed to establish qualitative composition and determine the quantitative content of individual fatty acids in the edible grass using the gas chromatography/mass spectrometry (GC/MS) method.

Materials and Methods

Plant materials. The study objects included flowers and leaves of *Rumex patientia* L. × *Rumex tianschanicus* Losinsk. collected at the beginning of flowering, roots harvested in autumn after withering of the aerial part, and seeds obtained at full maturity. The plant material was collected in 2023 at the research plots of the Cultural Flora Department at the M. M. Hryshko National Botanical Garden of the National Academy of Sciences of Ukraine (Kyiv). The

plant materials were dried in a warm-air convection dryer at a temperature of 40 °C and stored in paper bags in a dry place [11].

Chemicals and standards. Fatty acids were identified by the reference standard mixture FAME (Supelco, Belle fonte, PA, USA). The internal standard nonadecanoic acid (≥ 98% purity) used for metabolite quantification was purchased from Sigma-Aldrich (St. Louis, MO).

GC/MS determination of fatty acids (Protocol No. 403 of January 16, 2024). GC/MS analysis of fatty acids was performed using gas chromatograph Agilent 6890N with mass detector 5973 inert (Agilent Technologies, USA). Samples were analyzed on a silica capillary column HP-5MS (30 m × 0.25 mm × 0.25 mkm, Agilent Technologies, USA). The interface was operated at 250 and 380 °C respectively. The initially set up oven temperature at 60 °C for 4 min, then at the rate of 4 °C/min raised to 250 °C and kept at this point for 6 min and maintained at a final temperature for 7 min. The carrier gas was used helium at a constant flow rate of 1.0 ml/min. The sample with a volume of 1 µl was injected in a splitless mode using a 7683 series Agilent Technologies injector. Detection was performed in scan mode in the range (38–400 m/z).

Sample preparation with pre-column derivatization. Samples of herbal raw materials were ground into a powder by laboratory mill and about 0.5 g (accurately mass) were selected and placed into a glass vial. Then 3.3 ml of reacting mixture (methanol: toluene: sulfuric acid (44:20:2 v/v)) with 1.7 ml of internal standard solution (nonadecanoic acid in heptane solution) was added. The obtained samples were stood at 80 °C for 2 hours, refrigerated and centrifuged for 10 minutes at 5000 rpm. It was taken 0.5 ml of the upper heptane phase, which contains methyl esters of fatty acids [12–14].

The compositions of the product obtained were identified by comparison of their mass-spectrums with data obtained from the National Institute Standard and Technology (NIST 2008) database. The quantitative content of fatty acids was done using the internal standard of nonadecanoic acid in heptane solution added to the sample.

Research results and their discussion

In the present study, 15 fatty acids were identified and quantified, utilizing GC/MS analyses (Table 1). The chromatographic fatty acid profiles of *Rumex patientia* L. × *Rumex tianschanicus* Losinsk. raw materials are revealed in Figures 1–4, respectively. The results of the qualitative composition study and quantitative content determination of fatty acids of the raw material are shown in Table 1.

The analysis demonstrated that unsaturated fatty acids predominated across all samples of *Rumex patientia* L. × *Rumex tianschanicus* Losinsk. Saturated fatty acids accounted for approximately one-quarter of the total identified fatty acids in the leaves, while in the roots, seeds, and flowers, their proportion reached approximately one-third. The seeds showed the highest concentration of unsaturated fatty acids among all the plant parts examined.

Palmitic acid was the predominant saturated fatty acid identified across all *Rumex patientia* L. × *Rumex tianschanicus* Losinsk. samples, with concentrations ranging from 1858.77 µg/g in the seeds to 970.08 µg/g in the roots (Table 1).

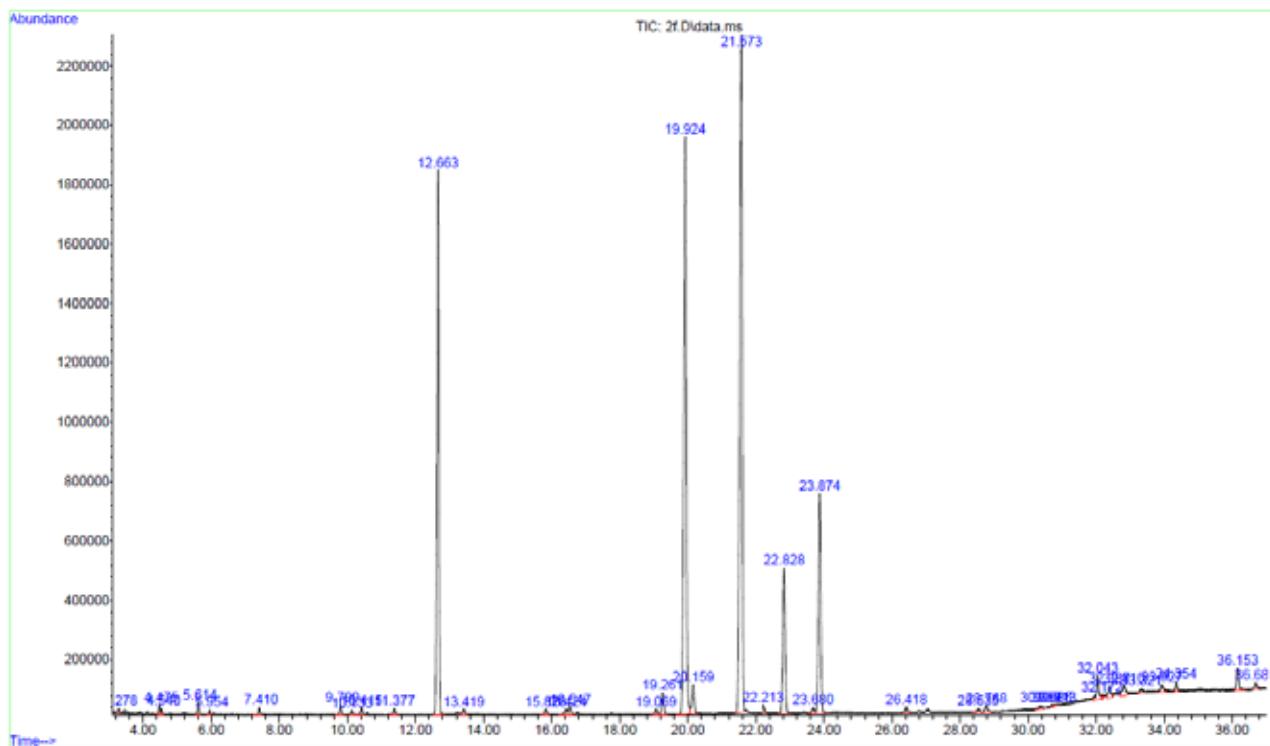


Fig. 1. Chromatographic profile of fatty acid methyl esters in *Rumex patientia* L. \times *Rumex tianschanicus* Losinsk. roots

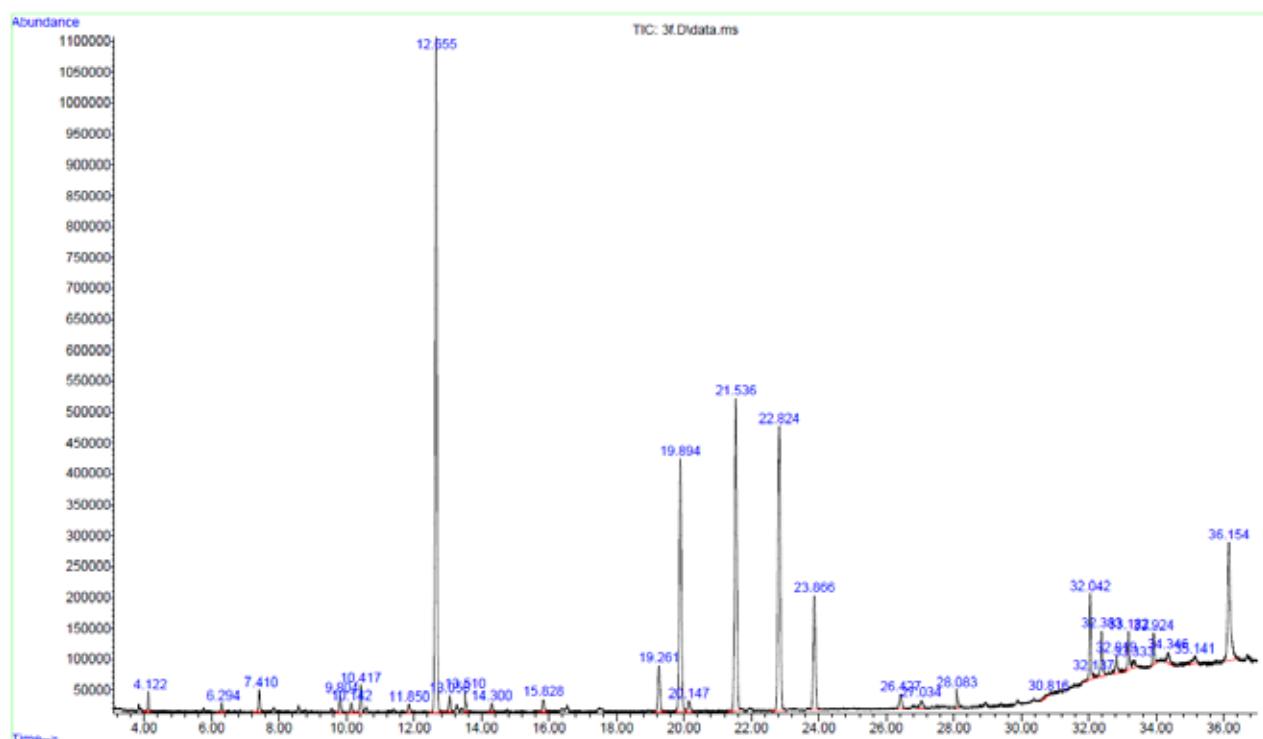


Fig. 2. Chromatographic profile of fatty acid methyl esters in *Rumex patientia* L. \times *Rumex tianschanicus* Losinsk. flowers

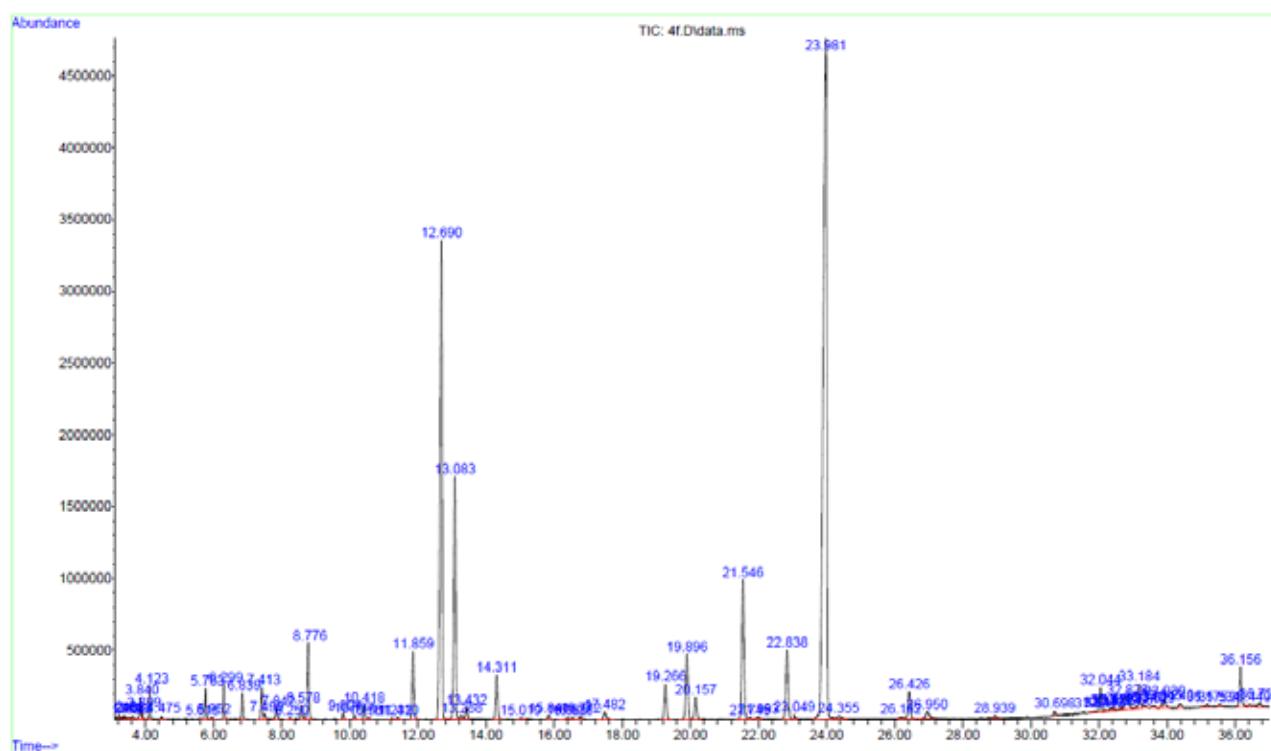


Fig. 3. Chromatographic profile of fatty acid methyl esters in *Rumex patientia* L. × *Rumex tianschanicus* Losinsk. leaves

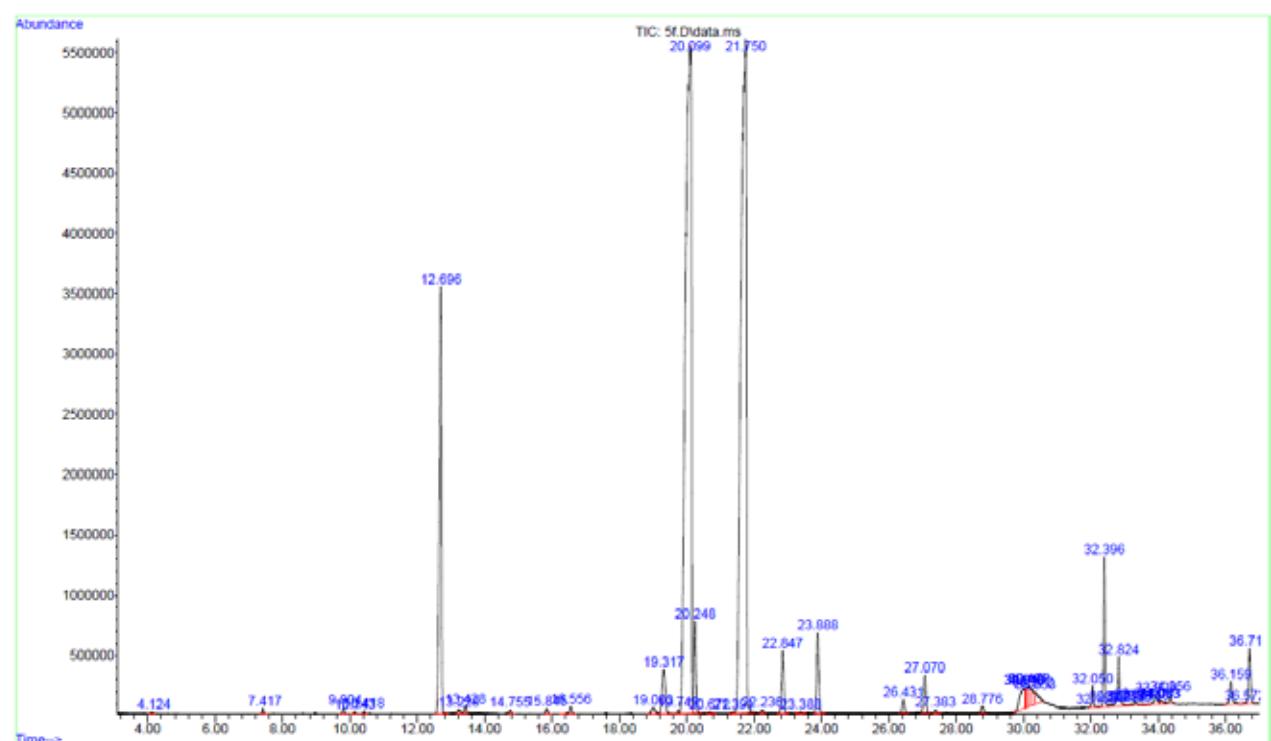


Fig. 4. Chromatographic profile of fatty acid methyl esters in *Rumex patientia* L. × *Rumex tianschanicus* Losinsk. seeds

Table 1

**The qualitative composition and quantitative content of fatty acids
of *Rumex patientia L. × Rumex tianschanicus* Losinsk. raw material**

Fatty acid name	Retention time	Fatty acids content of <i>Rumex patientia L. × Rumex tianschanicus</i> Losinsk., µg/g			
		Flowers	Leaves	Roots	Seed
Myristic acid	7.4	28.37	70.41	n/d	18.99
Pentadecanoic acid	9.8	n/d	11.95	n/d	n/d
Palmitic acid	12.65	1119.10	1824.54	970.08	1858.77
Palmitoleic acid*	14.31	n/d	155.40	n/d	n/d
Margaric acid	15.84	n/d	n/d	n/d	24.42
Stearic acid	19.26	44.66	90.74	138.34	295.39
Oleic acid*	19.89	1321.46	509.37	260.92	7947.51
Linoleic acid*	21.53	1507.01	608.63	553.95	13.21
Nonadecanoic acid	22.82	Internal standart			
α-Linolenic acid*	23.87	461.76	233.69	4291.10	363.01
Arachidic acid	26.42	n/d	36.16	114.91	62.34
11-Octadecenoic acid*	27.07	n/d	n/d	n/d	171.60
Behenic acid	32.04	50.99	112.23	59.81	61.61
Hexacosanoic acid	32.82	n/d	n/d	n/d	220.51
Tricosanoic acid	33.93	n/d	n/d	6.73	n/d
Lignoceric acid	36.16	n/d	289.48	149.65	115.20

Note: * – unsaturated fatty acids.

The seeds contained the highest concentration of stearic acid at 295.39 µg/g. In comparison, lower levels were observed in the roots (138.34 µg/g), leaves (90.74 µg/g), and flowers (44.66 µg/g). Additionally, the experiment revealed that the leaves, roots, and seeds of *Rumex patientia L. × Rumex tianschanicus* Losinsk. accumulated notable amounts of lignoceric acid (Table 1).

In all examined organs of *Rumex patientia L. × Rumex tianschanicus* Losinsk., consistently high levels of unsaturated fatty acids were observed. Oleic acid was the dominant unsaturated fatty acid in the flowers and seeds, while α-linolenic acid was predominant in the roots. The seeds exhibited the highest oleic acid concentration, reaching 7947.51 µg/g.

The highest concentration of linoleic acid was detected in the flowers, amounting to 1507.01 µg/g. In comparison, its levels in the leaves, roots, and seeds were 608.63 µg/g, 553.95 µg/g, and 13.21 µg/g, respectively (Table 1). Additionally, the analyzed samples of *Rumex patientia L. × Rumex tianschanicus* Losinsk. contained minor amounts of behenic, lignoceric, myristic, and arachidic acids.

Both linoleic and linolenic acids belong to the group of essential fatty acids, which are key components of dietary oils. The most significant among them are omega-3 and omega-6 fatty acids. In human nutrition, the specific types of fatty acids consumed are often more critical than the total amount of oil intake [15; 16]. Moreover, the balance between different fatty acids plays a vital role in both nutritional quality and economic value. Omega-3 fatty acids,

in particular, are essential and polyunsaturated, meaning they cannot be synthesized by the human body and must be obtained from the diet. A proper ratio of omega-3 to omega-6 is necessary for the body to metabolize them into functional derivatives. Given their recognized health benefits, omega-3 fatty acids are increasingly being included in everyday diets [17–19].

The research findings indicate that *Rumex patientia L. × Rumex tianschanicus* Losinsk. is a promising plant due to the important role of fatty acids in various biological processes.

Conclusions

The performed study on the fatty acid composition of *Rumex patientia L. × Rumex tianschanicus* Losinsk. did not reveal any substantial differences in qualitative composition and quantitative content of fatty acids across different plant parts. The results have shown that unsaturated fatty acids prevailed in the roots, leaves, flowers, and seeds. Their concentration exceeded that of saturated fatty acids by a factor of 3 to 4, depending on the specific type of raw material.

Our findings indicated that oleic acid was the predominant fatty acid in the leaves, flowers, and seeds of the studied plant, while α-linolenic acid was most abundant in the roots. These results may serve as a valuable foundation for the development of pharmaceutical products derived from *Rumex patientia L. × Rumex tianschanicus* Losinsk.

BIBLIOGRAPHY

1. Budniak L, Slobodianuk L, Marchyshyn S, Potishnyi I. Determination of amino acids of plants from *Angelica* L. genus by HPLC method. *Pharmacia*. 2022; 69(2): 437–446. DOI: 10.3897/pharmacia.69.e83705.
2. Prystupa BV, Bogatu SI, Eberle LV, Rozhkovsky YaV, Vorobyov DA. Farmakolohichnyi ta farmakohnostychnyi analiz roslin rodu stellaria [Pharmacological and pharmacognostic analysis of plants of the genus *Stellaria*]. *Odessa Medical Journal*. 2025; 2(193): 96–102. DOI: 10.32782/2226-2008-2025-2-15 (In Ukrainian).

3. Moroz PA, Cherevchenko TM, Rakhmetov DB. Stanovlennia ta rozvytok selektsiinykh doslidzhen u Natsionalnomu botanichnomu sadu im. M. M. Hryshka NAN Ukrayny [Formation and development of selection research in the National Botanical Garden named after M.M. Grishko of the NAS of Ukraine]. *Introduction of Plants*. 2003; 4: 37–46. (In Ukrainian). Available from: <http://jnas.nbuu.gov.ua/article/UJRN-0001037618>.
4. Li JJ, Li YX, Li N, Zhu H-T, Wang D, Zhang Y-J. The genus *Rumex* (Polygonaceae): An ethnobotanical, phytochemical and pharmacological review. *Nat. Prod. Bioprospect.* 2022; 12: 21. DOI: 10.1007/s13659-022-00346-z.
5. Berillo D, Kozhahmetova M, Lebedeva L. Overview of the Biological Activity of Anthraquinones and Flavanoids of the Plant *Rumex* Species. *Molecules*. 2022; 27: 1204. DOI: 10.3390/molecules27041204.
6. Litvinenko YA, Muzychkina RA. Phytochemical Investigation of Biologically Active Substances in Certain Kazakhstan *Rumex* Species. 1. *Chem. Nat. Compd.* 2003; 39: 446–449. DOI: 10.1023/B:CONC.0000011117.01356.4c.
7. Feduraev P, Skrypnik L, Nebreeva S, et al. Variability of Phenolic Compound Accumulation and Antioxidant Activity in Wild Plants of Some *Rumex* Species (Polygonaceae). *Antioxidants (Basel)*. 2022; 11(2): 311. DOI: 10.3390/antiox11020311.
8. Zengyang He, Jianfeng Zou, Xinyao Li, Tao Jiang, Jianguo Zeng, Miaofen Chen. Responses of nitrogen metabolism, photosynthetic parameter and growth to nitrogen fertilization in *Rumex patientia* L. × *Rumex tianschanicus* Losinsk. *Chilean journal of agricultural research*. 2025; 85(3): 459–468. DOI: 10.4067/s0718-58392025000300459.
9. Rolinec M, Rakhmetov D, Biro D, et al. Energy content of hybrid *Rumex patientia* L. x *Rumex tianschanicus* A.Los (Rumex OK 2) samples from spring months and June. *Acta Fytotechnica et Zootechnica*. 2018; 21(2): 60–62. DOI: 10.15414/afz.2018.21.02.60-62.
10. Rakhmetov DB, Rakhmetova SO. New ultra-early culture of complex use. *Proposal*. 2008; 3: 62–70. (In Ukrainian). Available from: <https://propozitsiya.com/articles/nova-ultrarannya-kultura-kompleksnoho-vykorystannya>.
11. Feshchenko H, Oleshchuk O, Slobodianiuk L, Milian I. Study of *Epilobium angustifolium* L. amino acids content by HPLC method. *ScienceRise: Pharmaceutical Science*. 2021; 6(34): 85–90. DOI: 10.15587/2519-4852.2021.249836.
12. Atolani O, Adeniyi O, Kayode OO, Adeosun CB. Direct preparation of fatty acid methyl esters and determination of in vitro antioxidant potential of lipid from fresh Sebal causarium Seed. *Journal of Applied Pharmaceutical Science*. 2015; 5: 24–28. DOI: 10.7324/JAPS.2015.50305.
13. Slobodianiuk L, Budniak L, Feshchenko H, Sverstiuk A, Palaniza Y. Quantitative analysis of fatty acids and monosaccharides composition in *Chamerion angustifolium* L. by GC/MS method. *Pharmacia*. 2022; 1: 167–174. DOI: 10.3897/pharmacia.69.e76687.
14. Olefrenko AO, Kyslychenko VS. Doslidzhennia zhynokyslotnoho skladu travy liziantusu rassela [Research of the fatty acid composition of russell's lisianthus herb]. *Odesa Medical Journal*. 2024; 6(191): 92–95. (In Ukrainian). Available from: <https://doi.org/10.32782/2226-2008-2024-6-16>.
15. Kim J, Kim Y, Park Y. Conjugated linoleic acid: potential health benefits as a functional food ingredient. *Annual review of food science and technology*. 2016; 7: 221–44. DOI: 10.1146/annurev-food-041715-033028.
16. Mercola J, D'Adamo CR. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. *Nutrients*. 2023; 15(14): 3129. DOI: 10.3390/nu15143129.
17. Tamkanat T, Nawab F, Usmani QI, Sarwath S. Khaksi (*Sisymbrium irio* L.): An updated review of its ethnopharmacology, phytochemistry and pharmacology. *Journal of Drug Delivery and Therapeutics*. 2025; 15(6): 288–296. DOI: 10.22270/jddt.v15i6.7219.
18. Wang Q, Zhang H, Jin Q, Wang X. Effects of Dietary Plant-Derived Low-Ratio Linoleic Acid/Alpha-Linolenic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis. *Foods*. 2023; 12(16): 3005. DOI: 10.3390/foods12163005.
19. Labdelli A, Tahirine M, Foughalia A, et al. Effect of Ecotype and Environment on Oil Content, Fatty Acid, and Sterol Composition of Seed, Kernel, and Epicarp of the Atlas Pistachio. *Agronomy*. 2022; 12(12): 3200. DOI: 10.3390/agronomy12123200.

Надійшла до редакція 05.08.2025

Прийнята до друку 02.12.2025

Електронна адреса для листування husaklv@tdmu.edu.ua

ДЛЯ АВТОРІВ

«ОДЕСЬКИЙ МЕДИЧНИЙ ЖУРНАЛ»

Відомості про видання

«Одеський медичний журнал» було засновано в 1926 році. За кілька років він набув неабиякого авторитету серед науковців. У ньому друкували свої праці вчені, чиї імена були всесвітньо відомі вже того часу або які здобули визнання в майбутньому. Та згодом, на початку 1930-х років, видання журналу було припинено. Поновлений у 1997 році, він за короткий час відновив свій авторитет і посів чільне місце серед наукових видань країни.

Засновником і видавцем «Одеського медичного журналу» є Одеський національний медичний університет.

Головним редактором із часів відновлення випуску журналу є академік НАМН України, лауреат Державної премії України В. М. Запорожан. До складу редакційної колегії та редакційної ради входять відомі вітчизняні й зарубіжні вчені.

«Одеський медичний журнал» включений до Переліку наукових фахових видань України в категорії «А» (галузь – медичні науки, спеціальності – 221 «Стоматологія», 222 «Медицина», 226 «Фармація, промислова фармація», 228 «Педіатрія» (Наказ Міністерства освіти і науки України № 1721 від 10.12.2024, додаток 6; доступ за посиланням <https://mon.gov.ua/static-objects/mon/uploads/public/675/>

ПРАВИЛА ПІДГОТОВКИ СТАТЕЙ ДО «ОДЕСЬКОГО МЕДИЧНОГО ЖУРНАЛУ»

1. В «Одеському медичному журналі» публікуються теоретичні й оглядові статті, які відображають важливі досягнення науки, підсумки завершених оригінальних клінічних та експериментальних досліджень, основні результати дисертаційних робіт із медицини, стоматології та фармації, а також матеріали меморіального характеру.

2. До розгляду приймаються проблемні та оригінальні статті загальним обсягом 7–15 сторінок, огляди – до 12–20 сторінок.

3. Не приймаються статті, які вже були надруковані в інших виданнях або запропоновані до публікації кільком виданням водночас, а також роботи, які за своєю сутністю є переробкою опублікованих раніше статей і не містять нового наукового матеріалу або нового наукового осмислення вже відомого матеріалу.

4. У журналі друкуються:

а) результати оригінальних досліджень у пріоритетних напрямах розвитку медичних, стоматологічних та фармацевтичних наук;

б) роботи з фундаментальних та прикладних проблем із таких спеціальностей: 221 – стоматологія, 222 – медицина, 226 – фармація, промислова фармація, 228 – педіатрія:

– генетика та прикладні аспекти медичної генетики;
– біофізичні та морфофункциональні характеристики клітин організму при різних видах патології;
– роботи з новітніх клітинних технологій;
– новітні розробки в галузі загальної і клінічної фармакології та фармації;

c49/0fe/675c490fea3a6035511617.pdf) Щороку в журналі друкується близько дев'яноста статей і повідомлень. Він надходить до найвідоміших бібліотек країни, великих наукових центрів, десятків навчальних закладів. Його появу гідно оцінено за межами нашої країни – він занесений до Index Copernicus, Ulrich's Periodicals Directory, BASE-Search, Google Академії, «Наукової періодики України», Scopus Content Selection and Advisory Board (CSAB) розглянула заявку журналу «Одеського медичного журналу» та схвалила її для реферування в наукометричній базі Scopus 25.10.2023 р.

У серпні 2022 року наукове видання «Одеський медичний журнал» отримало тримісячну стипендію від проекту «Підтримка українським редколегіям» (SUES – Support to Ukrainian Editorial Staff). SUES є ініціативою європейських установ та організацій, мета яких полягає в підтримці наукової спільноти України.

Розповсюджується за передплатою. Передплатити журнал можна в будь-якому передплатному пункті. Передплатний індекс – 48717.

Журнал виходить шість разів на рік.

ISSN 2226-2008

DOI 10.54229/2226-2008, 10.32782/2226-2008 (починаючи з № 3 (181) 2022 р.)

– досягнення в галузі вивчення етіології, патогенезу та діагностики сучасних захворювань;

– профілактика захворювань, щеплення, запобігання особливо небезпечним захворюванням;

в) експериментальні дослідження, огляди, клінічні випадки, нові методи та технології з сучасних актуальних проблем стоматології, медицини, педіатрії та фармації;

г) інформація, хроніка, ювілеї, матеріали з історії науки та медицини, фармації, стоматології, рецензії.

5. Стаття надсилається до редакції в електронному варіанті зі сканом першої сторінки з підписами всіх авторів. Своїми підписами автори гарантують, що статтю написано з дотриманням правил підготовки статей до «Одеського медичного журналу», експериментальні та клінічні дослідження були виконані відповідно до міжнародних етических норм наукових досліджень, а також надають редакції право на публікацію статті в журналі, розміщення її та матеріалів щодо неї на сайті журналу і в інших джерелах.

6. Стаття супроводжується сканом (1) направлена до редакції, завізованим підписом керівника та печаткою установи, де виконано роботу, (2) відомостями про авторів (з декларуванням участі кожного автора з деталізацією вкладу у підготовці статті), (3) декларацією щодо оригінальності тексту наукової статті, а для вітчизняних авторів також (4) експертним висновком, що дозволяє відкриту публікацію.

7. Якщо у статті використано матеріали, які є інтелектуальною власністю кількох організацій і раніше не публі-

кувалися, автор має одержати дозвіл на їх публікацію від кожної із цих організацій і надіслати його разом зі статтею.

8. Текст друкується через півтора інтервалу на стандартному машинописному аркуші (ширина полів: лівого, верхнього та нижнього – по 2 см, правого – 1 см) шрифтом Arial (Arial Cyr) або Times (Times Cyr) розміром 14 пунктів. Сторінка тексту повинна містити не більше 30 рядків.

9. Мова статей – англійська та українська (перевага віддається англомовним роботам).

10. Матеріал статті має бути викладений за такою схемою:

а) індекс УДК – зліва, відповідно до ключових слів;

б) ініціали та прізвище автора (авторів), ORCID ID кожного автора. Рекомендована кількість авторів статті має не перевищувати 5;

в) назва статті;

г) повна назва установи (установ), де виконано роботу, місто, країна. Якщо авторів кілька і вони працюють у різних установах, тоді необхідно арабськими цифрами позначити цифровий надрядковий знак, що відповідає установі, де працює кожний з авторів; а назва установи має бути вказана з відповідним цифровим позначенням, електронна адреса (адреси), номер телефону;

д) два резюме: українською мовою обсягом до 800 друкованих літер (0,45 сторінки) та англійською обсягом до 1800 друкованих літер (1 сторінка). Резюме українською мовою має складатися за такою схемою: індекс УДК, ініціали та прізвище автора (авторів), назва статті, текст резюме, ключові слова (не більше п'яти);

е) постановка проблеми в загальному вигляді та її зв'язок із важливими науковими та практичними завданнями;

ж) формулювання мети статті (постановка завдання);

з) матеріали і методи дослідження з описами методів дослідження, кількості та розподілу об'єктів дослідження. Має бути зазначено дотримання принципів Етичного кодексу Всесвітньої медичної асоціації (Гельсінська декларація) щодо досліджень, до яких долучають людей, або принципів Директиви Європейського Союзу 2010/10/63 EU щодо експериментів на тваринах;

и) виклад основного матеріалу дослідження з повним обґрунтуванням отриманих наукових результатів;

к) висновки з дослідження і перспективи подальших розробок у цьому напрямі;

л) літературні посилання в порядку їх цитування або за алфавітом.

11. Резюме англійською мовою має коротко повторювати структуру статті, включно зі вступом, метою та завданнями, методами, результатами, висновками, і містити ключові слова. Ініціали та прізвище автора (авторів) подаються у транслітерації, назва статті – у перекладі англійською мовою. Ключові слова й інші терміни статті мають відповідати загальноприйнятым медичним термінам, наведеним у словниках. Не слід використовувати сленг і скорочення, які не є загальновживаними.

12. Хімічні та математичні формули вдруковують або вписують. Структурні формули оформляють як рисунки. У формулах розмічають: малі та великі літери (великі позначають двома рисками знизу, малі – двома рисками зверху простим олівцем); латинські літери підкреслюють синім олівцем; грецькі – обводять черво-

ним олівцем; підрядкові та надрядкові цифри та літери позначають дугою простим олівцем.

13. У статтях слід використовувати Міжнародну систему одиниць СІ.

14. Рисунки і підписи до них виконують окремо. На зворотному боці кожного рисунка простим олівцем слід указати його номер і назву статті, а в разі необхідності позначити верх і низ.

15. Таблиці слід друкувати на окремих сторінках, вони повинні мати нумерацію та назву. На полях рукопису необхідно вказати місце розміщення рисунків і таблиць. Інформація, наведена в таблицях і на рисунках, не повинна дублюватися.

16. Список літературних джерел повинен містити перелік праць за останні 10 років і лише в окремих випадках – більш ранні публікації. В оригінальних роботах цитують не більше 20 джерел, в оглядах – до 60. На кожну роботу у списку літератури має бути посилання в тексті рукопису. Література у списку розміщується згідно з порядком посилань на неї в тексті статті, які подають у квадратних дужках, або за алфавітом. Якщо наводяться роботи лише одного автора, вони розміщуються за хронологічним порядком. До списку літературних джерел не слід включати роботи, які ще не надруковані.

17. Список літератури оформлюється латиницею за нижчеприведеними схемами англійською мовою або транслітеровані. Оформлювати їх необхідно згідно зі стандартом National Library of Medicine (NLM) або Vancouver style.

Для статей:

Povorozniuk VV, Balatska NI, Klymovytskiy FV, Synenkiy OV. Actual nutrition, vitamin D deficiency and bone mineral density in the adult population of different regions of Ukraine. *Trauma*. 2012;13(4):12–16. (In Ukrainian). Available from: <http://www.mif-ua.com/archive/article/34633>

Scott F, Mamtani R, Bresnighan C, et al. The risk of a second non-melanoma skin cancer with thiopurine and anti-TNF use in inflammatory bowel disease. *Am J Gastroenterol*. 2014;109:S473. doi: 10.1016/S0016-5085(14)60282-1.

Прізвища авторів та назва журналу подаються латиницею у транслітерації, назва статті – у перекладі англійською мовою. Транслітерацію можна зробити автоматично на сайті <http://ukrlit.org/transliteratsii>. У бібліографічному посиланні кожного джерела слід вказати всіх авторів, відокремлюючи один від одного комою і пробілом. Ініціали вказують після прізвища, знаками пунктуації не відокремлюються. Повні імена авторів не наводяться. У випадку 7 і більше авторів ставиться посилання “et al.” після перших трьох прізвищ. Якщо авторів 6 і менше, “et al.” не використовується. Після переліку авторів ставлять крапку і пробіл. Назва публікації наводиться англійською мовою повністю, без скорочень. Після назви статті ставлять крапку і пробіл. Назва періодичного видання наводиться англійською мовою або транслітерується символами латинського алфавіту. Дозволяється наводити зареєстровані скорочення назви періодичного видання. Зазвичай ця форма написання самостійно приймається виданням, її можна дізнатися на сайті журналу, видавництва, на сайті ISSN або необхідно наводити його повну назву без скорочення. Назви

вітчизняних журналів скорочувати не можна. Після назви видання ставлять крапку і пробіл. Інформація щодо видання: рік видання відокремлюється крапкою з комою, потім наводиться номер тому, якщо необхідно, у круглих дужках вказується номер журналу, після двокрапки наводиться діапазон сторінок. Для статті, що надрукована не англійською мовою, наприкінці сформованого посилання у круглих дужках вказується мова оригіналу. Додаткова інформація стосовно статті – номера DOI («DOI: <https://doi.org/...>»), PubMed ID, режим доступу до першоджерела тощо – наводиться наприкінці посилання у форматі активного гіперпосилання. Форма для пошуку DOI: Crossref system.

Для матеріалів конференцій:

Sulkowski M, Krishnan P, Tripathi R. Effect of baseline resistance-associated variants on SVR with the 3D regimen plus RBV. In: *Conference on Retroviruses and Opportunistic Infections (CROI)*. 2016 Feb 22–25; Boston, MA.

Bakeyeva LY, Saprunova VB, Pilipenko DI. Ultrastructure of mitochondria in endogenous oxidative stress, mitochondrial antioxidant protective effect SkQ1. In: *Proceeding of the IV congress of the Russian Society of Biochemistry and Molecular Biology*. 2008 May 11–15; Novosibirsk, Russian Federation. Novosibirsk; 2008. (in Russian).

Прізвища авторів подаються у транслітерації, назва праці – у перекладі англійською. Головне в описах конференцій – назва конференції мовою оригіналу (подається у транслітерації, якщо немає її англійської назви), виділяється курсивом. У дужках наводиться переклад назви англійською. Вихідні дані (місце проведення конференції, місце видання, рік, сторінки) – англійською.

Для монографій та інших книжок:

Mann DL, Zipes DP, Libby P, Bonow RO. Braunwald's heart disease: a textbook of cardiovascular medicine. Philadelphia: Saunders; 2014. 2040 p.

Lutsik AD, Detyuk YS, Lutsik MD, autors; Panasyuk YN, editor. Lektiny v gistokhimii [Lektins in histochemistry]. Lviv: Vyscha shkola; 1989. 144 p. (in Russian).

Прізвища авторів подаються у транслітерації, назва книжки – у транслітерації з перекладом англійською мовою у квадратних дужках. Місце видання, рік видання, загальна кількість сторінок – англійською, назва видавництва – у транслітерації.

Зauważуємо: у списку латиницею потрібно зазнати всіх авторів літературного джерела, на яке Ви посилаєтесь. Також не слід у ньому застосовувати знаки розділення: // та –. Назву джерела (журнал, конференція, книга) завжди виділяють курсивом.

Наприкінці літературного джерела потрібно вказувати цифровий ідентифікатор статті DOI, якщо такий є. Дотримання цих правил забезпечить коректне відображення цитованих джерел у більшості реферативних наукометричних баз даних.

18. Скорочення слів і словосполучень подаються відповідно до ДСТУ 3582-97 і ГОСТ 7.12-93.

Для тих, хто не має доступу до повного тексту ДСТУ, на сайті Одеського медуніверситету наведено приклади оформлення бібліографічних записів. Доступ за посиланням http://libblog.odmu.edu.ua/p/blog-page_8912.html.

19. До друкованих матеріалів, виконаних із використанням комп'ютерних технологій, обов'язково додаються матеріали комп'ютерного набору та графіки в електронному вигляді.

Текст може бути таких форматів: Word for Windows, RTF (Reach Text Format).

Графічний матеріал слід подавати в окремих файлах форматів XLS, TIFF, WMF або CDR. Роздільна здатність штрихових оригіналів (графіки, схеми) форматів TIFF повинна бути 300–600 dpi B&W, напівтонових (фотографії та ін.) – 200–300 dpi Gray Scale (256 градацій сірого). Ширина графічних оригіналів – 5,5, 11,5 і 17,5 см.

20. Статті піддаються науковому рецензуванню, за результатами якого ухвалюється рішення про доцільність публікації роботи. Відхилені статті не повертаються і повторно не розглядаються.

21. Редакція залишає за собою право редакційної правки статей, яка не спотворює їх зміст, або повернення статті автору для виправлення виявлених дефектів.

22. Датою надходження статті до журналу вважається день отримання редакцією остаточного варіанта тексту.

23. Після отримання підтвердження від редколегії про прийняття статті до публікації надаються реквізити для сплати публікаційного внеску. Вартість публікації становить 2000 гривень (за 12 сторінок). За кожну додаткову сторінку необхідно додати до публікаційного внеску 40 гривень. Публікаційний внесок покриває витрати, пов'язані з коректурою і редактуванням статей, макетуванням журналу та розміщенням його електронної версії. За бажанням автор статті може замовити собі друкований примірник журналу. Вартість друкованого примірника – 800 гривень, які необхідно сплатити додатково до публікаційного внеску. Підтвердження проведеної оплати (відскановану квитанцію або її фотографію) автор надсилає в електронному вигляді на e-mail omj@onmedu.od.ua.

24. Редакція «Одеського медичного журналу»: Валіховський пров., 2, ректорат Одеського національного медичного університету, м. Одеса, 65082, Україна; e-mail: redkolehiaOMJ@onmedu.edu.ua

Відповідальні секретарі журналу – доцент Грекова Алла, тел.: +38 (097) 938 30 52, доцент Юрченко Ірина, тел.: +38 (050) 815 53 05

Контактна особа (Видавничий дім «Гельветика») – Демченко Христина, тел.: +380 (93) 035 42 60; e-mail: omj@onmedu.od.ua

Науковий редактор – Антоненко Петро, тел.: +380 (97) 587 56 36

Сторінки журналу: journal.odmu.edu.ua, journals.onmedu.od.ua/index.php/med/home

25. Статті, що не відповідають цим правилам, не розглядаються. Передрук статей можливий лише з письмової згоди редакції та з посиланням на журнал.

Середній час очікування публікації (від дня подачі до дня публікації) – 2–8 місяців (залежно від фактичної кількості поданих авторами публікацій у конкретний випуск).

ДЕКЛАРАЦІЯ
щодо оригінальності тексту наукової статті

Я(ми), (П.І.Б. автора або авторів – зазначаються всі автори наукової статті), декларую(ємо), що у статті (назва наукової статті) наявний оригінальний текст, отриманий у результаті власних досліджень (клінічних спостережень), **відсутні** некоректні цитування, запозичення іншого тексту, відомості, передбачені ст. 32 та 69 Закону України «Про вищу освіту».

Заявляю(ємо), що моя(наша) наукова робота виконана самостійно і в ній не містяться елементи плаґіату.

Усі запозичення з друкованих та електронних джерел, а також із захищених раніше наукових робіт, кандидатських і докторських дисертацій мають відповідні посилання.

Я(ми) ознайомлений(і) з чинним Положенням про виявлення академічного плаґіату, згідно з яким наявність плаґіату є підставою для відмови прийняття наукової статті до опублікування в науковому журналі Одеського національного медичного університету.

Дата

Підпис(и)

Примітки: 1. У Декларації повинні бути підписи всіх авторів наукової статті, які мають бути засвідчені установою, де вони працюють.

2. Якщо автори статті є співпрацівниками різних установ, то Декларація повинна бути з кожної установи.

ПОРЯДОК РЕЦЕНЗУВАННЯ
рукописів наукових статей, які надходять для публікації
до редакції «Одеського медичного журналу»

Наукові статті, які надходять для публікації до редакції «Одеського медичного журналу», підлягають рецензуванню. Завданням рецензування є максимально об'єктивна оцінка змісту наукової статті, її відповідності вимогам журналу, аналіз її переваг та недоліків, внесення конкретних рекомендацій щодо її вдосконалення. Відповідальний секретар журналу проводить попередній аналіз статей, що надійшли до редакції, їхню відповідність тематиці та спеціалізації журналу. Рецензентів призначає головний редактор журналу. В окремих випадках за рішенням головного редактора призначення рецензента(ів) може бути доручене члену редакційної колегії або вирішено на засіданні редакційної колегії.

Рецензентами журналу є досвідчені фахівці – доктори наук, члени редколегії журналу та його редакційної ради. У разі потреби редакція залучає до рецензування сторонніх фахівців. Рецензенти мають відповідати кваліфікаційним вимогам згідно з Наказом МОН України від 15.01.2018 № 32. Наукові статті, що надійшли до журналу, спрямовуються на рецензію одному рецензенту, за необхідності – двом рецензентам. Для всіх статей, що надходять до журналу, визначається рівень їхньої унікальності за допомогою Системи програмно-обчислювального комплексу Strikeplagiarism.com.

Під час рецензування оцінюються відповідність статті тематиці журналу та її назві, актуальність і науковий рівень, переваги й недоліки, відповідність оформлення статті вимогам редакції. Наприкінці робиться висновок про доцільність публікації.

Рецензування проводиться конфіденційно за принципом подвійного «сліпого» рецензування (ані автор, ані рецензент не знають П.І.Б. одне одного). Рецензія надається автору статті на його запит без підпису, вказівки прізвища, посади і місця роботи рецензента.

В окремих випадках на прохання рецензента та за узгодженням із редакційною колегією журналу взаємодія рецензента та автора може відбуватись у відкритому режимі. Така практика застосовується лише в тому випадку, якщо відкрита взаємодія забезпечить поліпшення викладу матеріалу роботи, що рецензується. Зазвичай рецензент робить висновок щодо можливості публікації статті протягом 14 діб.

Якщо рецензент рекомендує виправити або доопрацювати статтю, редакція відправляє автору текст рецензії для внесення в роботу відповідних змін. Статті, відіслані авторам на виправлення, слід повернути до редакції не пізніше ніж через сім днів після одержання. Коректури авторам не висилаються, проте якщо це не порушує графік виходу журналу, можливе надання препринту, у якому допустиме виправлення лише помилок набору і фактажу.

Автору, стаття якого не була прийнята до публікації, на його запит відповідається мотивована відмова. Рукопис статті не повертається.

Якщо автор не згоден із думкою рецензента, він може дати мотивовану відповідь.

У разі потреби за погодженням з автором може бути проведено додаткове рецензування рукопису іншим фахівцем.

Остаточне рішення про публікацію статті та її терміни приймає редакційна колегія.

В окремих випадках за наявності позитивної рецензії можлива публікація статті за рішенням головного редактора або його заступника.

Після ухвалення рішення про публікацію статті редакція інформує про це автора з указанням терміну публікації.

Оригінали рецензій зберігаються в редакції протягом 1 року.

INFORMATION ABOUT EDITION

“ODES’KIJ MEDIČNIJ ŽURNAL” ("Odesa Medical Journal")

Publication information

“Odes’kij medičnij žurnal” (“Odesa Medical Journal”) was founded in 1926. During a few years it was highly appreciated by scientists. The works of the famous scientists had been published there. But then, at the start of 30-s, the publication of the Journal was stopped. It was renewed only in 1997, and very soon the Journal won its authority again and took a proper place among other scientific editions of the country.

The founder and publisher of “Odesa Medical Journal” is the Odesa National Medical University.

The editor-in-chief of the Journal since the time of its renewal is the academician of the NAMS of Ukraine, the Ukraine State Prize Winner V. M. Zaporozhan. The members of the editorial board and editorial council are the world-known scientists.

“Odesa Medical Journal” is included in the List of specialized scientific publications of Ukraine of category “A” (branch – medical sciences, specialties – 221 “Dentistry”, 222 “Medicine”, 226 «Pharmacy, industrial pharmacy», 228 “Pediatrics” (Order of the Ministry of Education and Science of Ukraine No. 1721 dated 10.12.2024, appendix 6; available at <https://mon.gov.ua/static-objects/mon/uploads/public/675c490fea3a6035511617.pdf>).

About 90 articles are published in the Journal annually.

It comes to the most known libraries of the country, large scientific centers, some educational establishments. Its release is highly appraised outside of the country: the Journal is represented in Index Copernicus, Ulrich’s Periodicals Directory, BASE-Search, Google Academy, “Scientific Periodics of Ukraine”, “Scientific Periodics of Ukraine”. The Scopus Content Selection & Advisory Board (CSAB) has reviewed application of the Odesa Medical Journal and approved it for coverage in Scopus database 25.10.2023. In August 2022, the scientific publication “Odesa Medical Journal” received a three-month scholarship from the “Support to Ukrainian Editorial Staff” (SUES – Support to Ukrainian Editorial Staff) project. SUES is an initiative of European institutions and organizations, the purpose of which is to support the scientific community of Ukraine.

The Journal is distributed by subscription. The Journal can be subscribed at any subscription point. Subscription index – 48717.

ISSN 2226-2008

Frequency of the Journal: The Journal appears bimonthly.

DOI 10.54229/2226-2008, 10.32782/2226-2008 (since N 3 (181) 2022)

THE MANUAL OF ARTICLE STYLE FOR “ODES’KIJ MEDIČNIJ ŽURNAL” ("ODESA MEDICAL JOURNAL")

1. “Odes’kij medičnij žurnal” (“Odesa Medical Journal”) publishes theoretical and review articles, which cover important achievements of science, results of completed original clinical and experimental researches, basic results of dissertations on medicine, dentistry and pharmacy, and also memorial materials.

2. Problem and original articles with total volume of 7–15 pages, reviews – up to 12–20 pages.

3. Articles, which have been already published in other editions or were submitted for publication to some editions at the same time, as well as the works which are a remake of the articles published before and do not contain new scientific material or new scientific comprehension of already known material are not submitted.

4. The following materials are published in the Journal:

a) results of original researches concerning main directions of development of medical, dental and pharmaceutical sciences;

b) works on fundamental and applied problems in 221 – dentistry, 222 – medicine, 226 – pharmacy, industrial pharmacy, 228 – pediatrics;

– genetics and applied aspects of medical genetics;

– biophysical and morphofunctional analysis of cells of an organism at different types of pathology;

– works on modern cellular technologies;

– modern elaborations in the field of general and clinical pharmacology and pharmacy;

– achievements in the field of study of etiology, pathogenesis and diagnostics of modern diseases;

– prophylaxis of diseases, inoculation, prevention of especially dangerous diseases;

c) experimental manuscripts, reviews, clinical cases, novel methods and technologies on current issues of dentistry, medicine, pediatrics, and pharmacy;

d) information, chronicle, anniversaries, materials on history of science and medicine, farmacy, dentistry, reviews.

5. The author sends to the editorial office an on-line version of the article with a scan of the first page and signatures of all authors. By their signatures the authors guarantee that the article meets all the requirements of the manual of the article style for “Odesa Medical Journal”, experimental and clinical researches have been executed according to the international ethical norms of scientific researches, and also they give the publisher a right for publication of

the article in the Journal, placing it and its materials on the Journal's site and in other sources.

6. An article is accompanied with a scan of (1) letter to the editorial staff, a vised signature of the chief and the seal of the establishment where the work was done, (2) information about the authors (with each author's contribution statement detailing his/her participation in the work), (3) the declaration of originality of the text of the scientific article and for the home authors also (4) by the expert inference, that authorizes the open publication.

7. If used in the article materials are intellectual property of some organizations and have not been published before, an author should get permission for their publication from each of these organizations and send it together with the article.

8. The text is printed with 1.5-spacing throughout the text on a standard paper (width of fields: on the left, above and below by 2 cm, on the right – 1 cm) in Arial (Arial Cyr) or Times (Times Cyr) 14 points. The page of the text should contain no more than 30 lines.

9. The language of the articles is Ukrainian and English.

10. The material of the article should be placed in the following order:

a) UDC index – on the left correspondingly to key words;

b) initials and the last name of the author (authors), authors' ORCID ID. The recommended amount of authors of an article should not exceed 5;

c) the title of the article;

d) a complete name of the establishment (establishments) where the work was done, city, country. If there are several authors and they work in different institutions, it is necessary to indicate in Arabic numerals a digital superscript corresponding to the institution where each of the authors works; and the name of the institution must be indicated with the appropriate numerical designation, e-mail, phone number;

e) two abstracts – in Ukrainian up to 800 printing letters (0.45 page) and in English up to 1800 printing letters (1 page). Ukrainian abstracts after the following scheme: UDC index, initials and the last name of author (authors), title of the article, text of the abstract, key words (no more than five);

f) statement of a problem in general and its connection with important scientific and practical tasks;

g) formulation of the aim of the article (raising a task);

h) research materials and methods with descriptions of research methods, number and distribution of the research objects. Compliance with the principles of the World Medical Association Code of Ethics (Helsinki Declaration) for human research or the principles of the EU Directive 2010/10/63 EU on animal experiments should be noted;

i) presentation of the main material of the study with a full justification of the obtained scientific results;

j) conclusions from the given research and perspectives of subsequent works in this direction;

k) references in the citation order or after the alphabet order.

11. The abstract in English should shortly reproduce the structure of the article, including introduction, purpose and task, methods, results, conclusions, key words. Initials and

the last name of author (authors) are given in transliteration, the title of the article must be translated into English. The key words and other terms of the article should correspond to generally used medical terms cited in dictionaries. One should not use slang and abbreviations which are not in general use.

12. The chemical and mathematical formulas are imprinted or put down. The structural formulas are designed as figures. In formulas there are marked out: small and large letters (large ones by two hyphens from below, small ones – by two hyphens from above by a lead pencil); the Latin letters are underlined with a dark blue pencil; Greek ones – with a red pencil; subscript and superscript letters – by an arc line with a lead pencil.

13. The International System of Units (SI) should be used in the articles.

14. Figures and signatures to them are made separately. On the back side of every figure by a lead pencil one should indicate its number and title of the articles, and if necessary to note a top and bottom.

15. The tables should be placed on separate pages, be numbered and titled. The marginal notes should indicate the place of figures and tables. The information given in tables and figures must not be duplicated.

16. The references must contain the list of works for the last 10 years and only sometimes – more early publications. In the original works they quote no more than 20 sources, in the reviews – about 60. Every work in the references should be referred in the manuscript. The literature in the list is ordered according to reference to it in the text of the article, which is given in square brackets, or after the alphabet. If the works of one and the same author are presented, they take place after the chronological order. The references shouldn't contain works which have not been published yet.

17. The references should be arranged in Latin alphabet according to rules below in English or transliterated according to the National Library of Medicine (NLM) standard or Vancouver style.

For articles:

Povorozniuk VV, Balatska NI, Klymovytskiy FV, Synenkiy OV. Actual nutrition, vitamin D deficiency and bone mineral density in the adult population of different regions of Ukraine. *Trauma*. 2012;13(4):12–16. (In Ukrainian). Available from: <http://www.mif-ua.com/archive/article/34633>

Scott F, Mamani R, Bresinger C, et al. The risk of a second non-melanoma skin cancer with thiopurine and anti-TNF use in inflammatory bowel disease. *Am J Gastroenterol*. 2014;109:S473. DOI: 10.1016/S0016-5085(14)60282-1.

The authors' surnames and the title of the Journal are given in Latin in transliteration, the title of the article is translated into English. Transliteration can be done automatically at the site: <http://ukrlit.org/translitratsii>. In the bibliographic reference of each source it is necessary to specify all authors, separating from each other a comma and a space. Initials are indicated after the surname, punctuation marks are not separated. The full names of the authors are not given. In the case of 7 or more authors, the reference "et al." after the first three surnames. If the authors are 6 or less, "et al." not used. After the list of authors a point and a space is put. The title of the publication is given in English in full, without abbreviations. After

the title of the article a point and a space are put. The title of the periodical is given in English or transliterated with the symbols of the Latin alphabet. It is allowed to cite the registered abbreviations of the title of the periodical. Usually this form of writing is accepted by the publication itself, it can be found on the website of the Journal, publisher, on the ISSN website, or it is necessary to give its full name without abbreviation. The names of domestic Journals cannot be abbreviated. After the title of the publication a point and a space are put. Information about the publication: the year of publication is separated by a semicolon, then the volum's number is given, if necessary, in parentheses indicate the number of the Journal, after the colon follows the range of pages. For an article that is not published in English, the language of the original is indicated in parentheses at the end of the generated link. Additional information about the article – DOI number («DOI: <https://doi.org/...>»), PubMed ID, source access mode, etc. – is provided at the end of the link as hyperlink. Search form for DOI: Crossrefsystem.

For materials of conferences:

Sulkowski M, Krishnan P, Tripathi R. Effect of baseline resistance-associated variants on SVR with the 3D regimen plus RBV. In: *Conference on Retroviruses and Opportunistic Infections (CROI)*. 2016 Feb 22–25; Boston, MA.

Bakeyeva LY, Saprunova VB, Pilipenko DI. Ultrastructure of mitochondria in endogenous oxidative stress, mitochondrial antioxidant protective effect SkQ1. In: *Proceeding of the IV congress of the Russian Society of Biochemistry and Molecular Biology*. 2008 May 11–15; Novosibirsk, Russian Federation. Novosibirsk; 2008. (in Russian).

The last names of authors are given in transliteration, title of the work – in translation into English. The main thing in descriptions of conferences is the name of conference in the language of original (is given in transliteration if there is not its English title), indicated by italic. Translation of the title into English is given in brackets. Imprint (place of holding a conference, place of publication, year, pages) – in English.

For monographs and other books:

Mann DL, Zipes DP, Libby P, Bonow RO. Braunwald's heart disease: a textbook of cardiovascular medicine. Philadelphia: Saunders; 2014. 2040 p.

Lutsik AD, Detyuk YS, Lutsik MD, autors; Panasyuk YN, editor. Lektiny v gistokhimii [Lektins in histochemistry]. Lviv: Vyscha shkola; 1989. 144 p. (in Russian).

The last names of authors are given in transliteration, title of the book – in transliteration with translated into English in the square brackets. Place of publication, year of publication, total number of pages – in English, name of publishing house – in transliteration.

Please, note: in the references in the Roman alphabet it is necessary to indicate all the authors of the literary source, which you refer to. It should also not use punctuation: // and –. The name of the source (Journal, conference, book) is always indicated by italic.

At the end of the literature source, the digital identifier DOI must be indicated (if it is present). The observance of these rules will provide the true representation of quoted sources in the majority of citation databases.

18. Abbreviations of words and word combinations are given according to State Standards of Ukraine 3582-97 and National State Standard 7.12-93.

Those who have no assess to the full content of NSS can find it at the site of the Odesa Medical University, the bibliography examples style is presented. Available from http://libblog.odmu.edu.ua/p/blog-page_8912.html.

19. The printed materials executed with the use of computer technologies are added by computer type-setting materials and graphic in digital form.

The text can be done in the following formats: Word for Windows, RTF (Reach Text Format).

The graphic material should be submitted in separate files of the XLS, TIFF, WMF or CDR formats. Resolution of line originals (the graphics, schemes) of the TIFF formats must be 300–600 dpi B&W, halftone (pictures, etc.) – 200–300 dpi Gray Scale (256 gradations of gray). Width of graphic originals – 5.5, 11.5 and 17.5 cm.

20. Articles are subjected to scientific reviewing, as a result of which the decision is taken whether to publish the work or not. The rejected articles are not returned and are not resubmitted.

21. The Journal reserves the right for editorial correcting, which does not distort its contents, or returns an article to the author for correction of revealed errors.

22. The date of article's coming to the Journal is the day when the editorial office receives the final variant of the text.

23. After the editorial board confirms that the article has been submitted, requisite payment details are provided. The cost of publication is UAH 2,000 (up to 12 pages). Each additional page is paid separately UAH 40. The publication fee covers costs of proofreading and editing, page-planning and on-line version of the Journal. At the request the author of the article can order a printed copy of the Journal. The cost of a printed copy is UAH 800, which must be paid in addition to the publication fee. The author sends confirmation of the payment (a scanned check or its photo) to e-mail omj@onmedu.od.ua.

24. “Odesa Medical Journal” contacts:

Valikhovsky Lane, 2, Odesa National Medical University Rectorate, Odesa, 65082, Ukraine;

e-mail: redkolechiaOMJ@onmedu.edu.ua

Executive Secretaries — Associate Professor Alla Grekova, phone +38 (097) 938 30 52, Associate Professor Iryna Yurchenko, phone +38 (050) 815 53 05

Person of contact (Publishing House “Helvetica”) – Khrystyna Demchenko,

phone: +380 (93) 035 42 60;

e-mail: omj@onmedu.od.ua

Scientific editor – Petro Antonenko, phone: + 380 (97) 587 56 36

Journal sites: journal.odmu.edu.ua,

journals.onmedu.od.ua/index.php/med/home

25. The articles that fail to meet these requirements are not admitted. Reprinting of articles is possible only with the written consent of the editors and with reference to the Journal.

The average waiting time of publication (from the day of submission to the day of publication) is 2–3 months (depending on the actual number of publications submitted by authors to a definite issue).

DECLARATION on Originality of the Text of the Scientific Article

I(we) (*name, first name and patronymic of the author or authors (all authors of the scientific article are indicated)*) declare that in (*the name of the scientific article*) the available text, obtained as a result of own researches (clinical investigations) is original, improper quotations, borrowings of other text, or information given in the section 32 and 69 of the Law of Ukraine "On Higher Education" **absent**.

I(we) declare that my scientific study is executed independently, and has no plagiarism elements.

All borrowings from the printing and electronic sources, as well as from defended before scientific studies, candidate's and doctoral dissertations have the proper references.

I'm(we are) acquainted with the current regulation about detecting academic plagiarism, according to which the detecting of plagiarism is the reason for the refusal of scientific article publication in the scientific journals of the Odesa National Medical University.

Date

Signature(s)

Notes: 1. The signatures of all authors of scientific article, which are to be certified by establishment where they work, must be in Declaration.

2. If authors of the article are employees of different establishments, Declaration must be provided from every establishment.

MANUSCRIPTS REVIEWING ORDER

Scientific articles submitted to "Odes'kij medičnij žurnal" ("Odesa Medical Journal") need reviewing. The task of reviewing is the most objective assessment of the content of the scientific article, its compliance with the requirements of the Journal, analysis of its advantages and disadvantages, making specific recommendations for its improvement. The executive secretary of the Journal conducts a preliminary analysis of the articles received by the editors, their relevance to the subject and specialization of the Journal. The reviewers are appointed by the editor-in-chief of the Journal. In some cases, by the decision of the editor-in-chief, the appointment of the reviewer (s) may be entrusted to a member of the editorial board or decided at the meeting of the editorial board.

The reviewers of the Journal are experienced specialists – doctors of sciences, members of the editorial board and editorial council of the Journal. If necessary the editors invite external experts for cooperation. The reviewers must meet the qualification requirements in accordance with the Order of the Ministry of Education and Science of Ukraine dated 15.01.2018 No 32. The scientific articles submitted to the Journal are sent for review to one reviewer, if necessary – to two reviewers. For all articles submitted to the Journal, the level of their uniqueness is determined using the programming and computing suite Strikeplagiarism. com. The reviews should estimate if the article corresponds to the subject of the Journal and its title, actuality and scientific level, advantages and disadvantages, correspondence of the article style to the editorial requirements. The conclusion about advisability of publication is drawn at the end.

Reviewing is conducted confidentially by the principle of double "blind" reviewing (neither the author nor the reviewer know each other's names). The review is provided to the author of the article at his request without a signa-

ture, indication of the name, position and place of work of the reviewer. In some cases, at the request of the reviewer and in agreement with the editorial board of the Journal, the interaction of the reviewer and the author may take place in an open mode. This practice is used only if open interaction will improve the presentation of the peer-reviewed work. Usually the reviewer concludes that the article can be published within 14 days.

If the reviewer recommends to correct or complete the article, the editorial staff sends the review text to the author for inserting proper changes in. The articles submitted to authors for correction should be returned to the editors no later than seven days after receipt. Proofreaders are not sent to the authors, but if this does not disturb the schedule of the Journal, it is possible to provide a preprint in which it is permissible to correct only typing and factual errors.

The author, whose article was not submitted to the publication, is sent a reasonable refuse on his demand. The manuscript is not returned.

If the author does not agree with a reviewer's point of view, he can give him a reasonable answer.

In case of necessity an additional reading of manuscript by another specialist can be carried out on agreement with the author.

A final decision about the publication of the article and its terms is made by the editorial board.

Sometimes in case of a positive review the article can be published after the editor-in-chief's or vice-editor-in-chief's decision.

After approval of the article publication the editorial staff informs the author about it with indicating the term of publication.

Originals of reviews are kept in the editorial during 1 year.

Науково-практичний журнал

ОДЕСЬКИЙ МЕДИЧНИЙ ЖУРНАЛ

№ 5 (196) 2025

Коректура • *Ірина Чудеснова*

Комп'ютерна верстка • *Оксана Молодецька*

E-mail: omj@onmedu.od.ua
Сайти: <http://journals.onmedu.od.ua>, <http://journal.odmu.edu.ua>

Підписано до друку: 08.09.2025.
Формат 60x84/8. Гарнітура Times New Roman.
Папір офсет. Цифровий друк. Обл.-вид. арк. 10,67. Ум. друк. арк. 12,79.
Замов. № 0126/003. Наклад 100 прим.

Видавництво і друкарня – Видавничий дім «Гельветика»
65101, Україна, м. Одеса, вул. Інглезі, 6/1
Телефон +38 (095) 934 48 28, +38 (097) 723 06 08
E-mail: mailbox@helvetica.ua
Свідоцтво суб'єкта видавничої справи
ДК № 7623 від 22.06.2022 р.