PURINE MEDIATORS AS SIGNALING MOLECULES IN EYE PHYSIOLOGY AND PATHOLOGY (LITERATURE REVIEW)
DOI:
https://doi.org/10.32782/2226-2008-2025-1-11Keywords:
purinergic system, adenosine, renin-angiotensin system, eye tissues, glaucomaAbstract
Actuality. The purine system, and adenosine as its most prominent representative, is involved in the regulation of many physiological processes in the body. Balance disorders in the functioning of this system can be a part of the pathogenesis of various ocular pathologies. Adenosine is considered as a potential agent for correction of ocular hydrodynamics, neuroprotection, and anti-inflammatory effects in the eye. There is a complex relationship between adenosine and another regulatory system, the renin-angiotensin system, which also has local representation in the eyes. These mechanisms take part in the formation of eye diseases with endothelial vascular dysfunction, such as glaucoma, diabetic retinopathy, age-related macular degeneration, etc. Purpose – analyze the world literature on the involvement of the purinergic system in physiological and pathological processes in the eye and the possibility of developing a new direction of drug treatment in ophthalmology, especially in glaucoma. Materials and methods. The present article analyzes the scientometric databases of PubMed, Scopus, Web of Science, PMC free article, and Google Scholar from 1996 to 2024. A total of 41 studied sources were included, covering the world literature on the involvement of the purinergic system in physiological and pathological processes in the eye. Research results. Literature data indicate that the adenosine system is one of the potential target systems for therapeutic approaches in glaucoma. The development of a new direction of drug treatment for glaucoma is possible due to the proven properties of purine mediators, especially for adenosine as a ubiquitous local modulator, particularly in the eye.
References
Huang Z, Xie N, Illes P, et al. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther. 2021; 6(1):162. doi: 10.1038/s41392-021-00553-z.
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal. 2016; 12(1):25–57. doi: 10.1007/s11302-015-9483-2.
Yadav VR, Nayeem MA, Tilley SL, Mustafa SJ. Angiotensin II stimulation alters vasomotor response to adenosine in mouse mesenteric artery: role for A1 and A2B adenosine receptors. Br J Pharmacol. 2015; 172(20):4959–69. doi: 10.1111/bph.13265.
Safarzadeh E, Jadidi-Niaragh F, Motallebnezhad M, Yousefi M. The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflamm Res. 2016; 65(7):511–20. doi: 10.1007/s00011-016-0936-z.
Zeiner J, Loukovaara S, Losenkova K, et al. Soluble and membrane-bound adenylate kinase and nucleotidases augment ATP-mediated inflammation in diabetic retinopathy eyes with vitreous hemorrhage. J Mol Med (Berl). 2019; 97(3):341–354. doi: 10.1007/s00109-018-01734-0.
Losenkova K, Takeda A, Ragauskas S, et al. CD73 controls ocular adenosine levels and protects retina from light-induced phototoxicity. Cell Mol Life Sci. 2022; 79(3):152. doi: 10.1007/s00018-022-04187-4.
Fu X, Feng S, Qin H, Yan L, Zheng C, Yao K. Microglia: The breakthrough to treat neovascularization and repair bloodretinal barrier in retinopathy. Front Mol Neurosci. 2023; 16:1100254. doi: 10.3389/fnmol.2023.1100254.
Goebel CP, Song YS, Zaitoun IS, et al. Adenosine Receptors Expression in Human Retina and Choroid with Age-related Macular Degeneration. J Ophthalmic Vis Res. 2023; 18(1):51–59. doi: 10.18502/jovr.v18i1.12725.
Marín-Castejón A, Marco-Bonilla M, Terencio MC, et al. Adenosine A2B receptor agonist improves epidermal barrier integrity in a murine model of epidermal hyperplasia. Biomed Pharmacother. 2024; 173:116401. doi: 10.1016/j.biopha.2024.116401.
Jagannath A, Varga N, Dallmann R, et al. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat Commun. 2021; 12(1):2113. doi: 10.1038/s41467-021-22179-z.
Ito YA, Di Polo A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion. 2017; 36:186–192. doi: 10.1016/j.mito.2017.08.014.
Yu DY, Cringle SJ, Balaratnasingam C, et al. Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res. 2013; 36:217–46. doi: 10.1016/j.preteyeres.2013.07.001.
Zhong Y, Yang Z, Huang WC, Luo X. Adenosine, adenosine receptors and glaucoma: an updated overview. Biochim Biophys Acta. 2013; 1830(4):2882–90. doi: 10.1016/j.bbagen.2013.01.005.
Shen WC, Huang BQ, Yang J. Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural Regen Res. 2023; 18(1):87–93. doi: 10.4103/1673-5374.344831.
Jacobson KA, Delicado EG, Gachet C, et al. Update of P2Y receptor pharmacology: IUPHAR Review 27. Br J Pharmacol. 2020; 177(11):2413–2433. doi: 10.1111/bph.15005.
Illes P, Müller CE, Jacobson KA, et al. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol. 2021; 178(3):489–514. doi: 10.1111/bph.15299.
Santiago AR, Madeira MH, Boia R, Aires ID, Rodrigues-Neves AC, Santos PF, Ambrósio AF. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Ther. 2020; 210:107513. doi: 10.1016/j.pharmthera.2020.107513.
Ventura ALM, Dos Santos-Rodrigues A, Mitchell CH, Faillace MP. Purinergic signaling in the retina: From development to disease. Brain Res Bull. 2019; 151:92–108. doi: 10.1016/j.brainresbull.2018.10.016.
Lu LJ, Tsai JC, Liu J. Novel Pharmacologic Candidates for Treatment of Primary Open-Angle Glaucoma. Yale J Biol Med. 2017; 90(1):111–118. PMID: 28356898; PMCID: PMC5369028.
Boia R, Salinas-Navarro M, Gallego-Ortega A, et al. Activation of adenosine A3 receptor protects retinal ganglion cells from degeneration induced by ocular hypertension. Cell Death Dis. 2020; 11(5):401. doi: 10.1038/s41419-020-2593-y.
Chen X, Sun X, Ge Y, Zhou X, Chen JF. Targeting adenosine A2A receptors for early intervention of retinopathy of prematurity. Purinergic Signal. 2024 Feb 8. doi: 10.1007/s11302-024-09986-x.
Andrés-Guerrero V, García-Feijoo J, Konstas AG. Targeting Schlemm’s Canal in the Medical Therapy of Glaucoma: Current and Future Considerations. Adv Ther. 2017; 34(5):1049–1069. doi: 10.1007/s12325-017-0513-z.
Aires ID, Boia R, Rodrigues-Neves AC, et al. Blockade of microglial adenosine A2A receptor suppresses elevated pressureinduced inflammation, oxidative stress, and cell death in retinal cells. Glia. 2019; 67(5):896–914. doi: 10.1002/glia.23579.
Aires ID, Madeira MH, Boia R, et al. Intravitreal injection of adenosine A2A receptor antagonist reduces neuroinflammation, vascular leakage and cell death in the retina of diabetic mice. Sci Rep. 2019; 9(1):17207. doi: 10.1038/s41598-019-53627-y.
Chan ES, Fernandez P, Merchant AA, et al. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. Arthritis Rheum. 2006; 54(8):2632–42. doi: 10.1002/art.21974.
Zhong DJ, Zhang Y, Zhang S, et al. Adenosine A2A receptor antagonism protects against hyperoxia-induced retinal vascular loss via cellular proliferation. FASEB J. 2021; 35(9):e21842. doi: 10.1096/fj.202100414RR.
Ibrahim AS, El-Shishtawy MM, Zhang W, Caldwell RB, Liou GI. A(₂A) adenosine receptor (A(₂A)AR) as a therapeutic target in diabetic retinopathy. Am J Pathol. 2011; 178(5):2136–45. doi: 10.1016/j.ajpath.2011.01.018.
Wang Y, Chen S, Shi W, et al. Targeted Affinity Purification and Mechanism of Action of Angiotensin-Converting Enzyme (ACE) Inhibitory Peptides from Sea Cucumber Gonads. Mar Drugs. 2024; 22(2):90. doi: 10.3390/md22020090.
Zhou R, Zhang S, Gu X, et al. Adenosine A2A receptor antagonists act at the hyperoxic phase to confer protection against retinopathy. Mol Med. 2018; 24(1):41. doi: 10.1186/s10020-018-0038-1.
Ye SS, Tang Y, Song JT. ATP and Adenosine in the Retina and Retinal Diseases. Front Pharmacol. 2021; 12:654445. doi: 10.3389/fphar.2021.654445.
Fisher O, Benson RA, Imray CH. The clinical application of purine nucleosides as biomarkers of tissue Ischemia and hypoxia in humans in vivo. Biomark Med. 2019; 13(11):953–965. doi: 10.2217/bmm-2019-0049.
Virdis A, Ghiadoni L, Marzilli M, et al. Adenosine causes the release of active renin and angiotensin II in the coronary circulation of patients with essential hypertension. J Am Coll Cardiol. 1999; 33(6):1677–84. doi: 10.1016/s0735-1097(99)00078-9.
Persson AE, Lai EY, Gao X, Carlström M, Patzak A. Interactions between adenosine, angiotensin II and nitric oxide on the afferent arteriole influence sensitivity of the tubuloglomerular feedback. Front Physiol. 2013; 4:187. doi: 10.3389/fphys.2013.00187.
Gomes CP, Leão-Ferreira LR, Pinheiro AA, Gomes-Quintana E, Wengert M, Lopes AG, Caruso-Neves C. Crosstalk between the signaling pathways triggered by angiotensin II and adenosine in the renal proximal tubules: implications for modulation of Na(+)-ATPase activity. Peptides. 2008; 29(11):2033–8. doi: 10.1016/j.peptides.2008.07.004.
Mirabito Colafella KM, Bovée DM, Danser AHJ. The renin-angiotensin-aldosterone system and its therapeutic targets. Exp Eye Res. 2019; 186:107680. doi: 10.1016/j.exer.2019.05.020.
Nath M, Chandra P, Halder N, et al. Involvement of Renin-Angiotensin System in Retinopathy of Prematurity – A Possible Target for Therapeutic Intervention. PLoS One. 2016; 11(12):e0168809. doi: 10.1371/journal.pone.0168809.
Semba K, Namekata K, Guo X, Harada C, Harada T, Mitamura Y. Renin-angiotensin system regulates neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis. 2014; 5(7):e1333. doi: 10.1038/cddis.2014.296.
Nagai N, Kawashima H, Toda E, et al. Renin-angiotensin system impairs macrophage lipid metabolism to promote agerelated macular degeneration in mouse models. Commun Biol. 2020; 3(1):767. doi: 10.1038/s42003-020-01483-2.
Gericke A, Mann C, Zadeh JK, et al. Elevated Intraocular Pressure Causes Abnormal Reactivity of Mouse Retinal Arterioles. Oxid Med Cell Longev. 2019; 2019:9736047. doi: 10.1155/2019/9736047.
Holappa M, Vapaatalo H, Vaajanen A. Local ocular renin-angiotensin-aldosterone system: any connection with intraocular pressure? A comprehensive review. Ann Med. 2020; 52(5):191–206. doi: 10.1080/07853890.2020.1758341.
Birk M, Baum E, Zadeh JK, et al. Angiotensin II Induces Oxidative Stress and Endothelial Dysfunction in Mouse Ophthalmic Arteries via Involvement of AT1 Receptors and NOX2. Antioxidants (Basel). 2021; 10(8):1238. doi: 10.3390/antiox10081238.