PATHOGENETIC FEATURES OF ENDOTHELIAL DYSFUNCTION IN EXPERIMENTAL TYPE 2 DIABETES MELLITUS
DOI:
https://doi.org/10.32782/2226-2008-2025-1-3Keywords:
endothelial dysfunction, diabetes mellitus, endothelin-1 nitric oxide, NO synthasesAbstract
Introduction. Diabetes mellitus (DM) is one of the most acute medical and social problems in modern society. The leading link in the pathogenesis of diabetes is a persistent increase in blood glucose and insulin resistance of target cells, which in turn leads to complications. Endothelial cells are the first to be affected by high blood glucose concentrations. Hyperglycaemia activates protein kinase C, leads to the accumulation of glycosylated proteins, an increase in the content of oxidised plasma lipoproteins, which causes disruption of vascular energy metabolism and endothelial cell damage Materials and Methods. The experimental study was carried out on rats of both sexes of the Wistar line, weighing 180–200 g, aged 3 months. During the experiment, the animals were divided into two groups – 18 rats each: Group I – intact animals; Group II – animals with modelled diabetes mellitus. Results. It has been established that diabetes mellitus increases vasoconstrictor mediators such as endothelin-1 against the background of a decrease in the activity of endothelial NO synthase, which indicates a violation of the physiological synthesis of nitric oxide, and accordingly leads to the development of endothelial dysfunction in the modelled pathological condition. Conclusions. In type 2 diabetes mellitus, a whole cascade of pathological reactions in the vascular endothelium unfolds. As a result, persistent endothelial dysfunction develops, which leads to the fact that the vascular endothelium itself is involved in the pathogenesis of type 2 diabetes and causes a number of other complications.
References
Didushko OM. Tsukrovyi diabet 2-ho typu i khronichna khvoroba nyrok: suchasni mozhlyvosti tsukroznyzhuvalnoi terapii. Mizhnarodnyi endokrynolohichnyi zhurnal. 2020; 16 (3):251–256. DOI: 10.22141/2224-0721.16.3.2020.205275
Chellappan DK, Wei SY, Nurfatihah A, Suhaimi A, Gaurav G, Kamal D. Current therapies and targets for type 2 diabetes mellitus. Panminerva Med. 2018;3(60):117–131. DOI:10.23736/S0031-0808.18.03455-9
Zlatkina VV, Tykhonova TM, Bogun LV. TNF-α levels in hypertensive patients with type 2 diabetes mellitus with and without obesity. Journal of V. N. Karazin Kharkiv National University. Series 'Medicine'. 2024;32(4):560-570. DOI: https://doi.org/10.26565/2313-6693-2024-51-10
Schmidt AM. Highlighting Diabetes Mellitus: The Epidemic Continues. Arteriosclerosis, Thrombosis, and Vascular Biology. 2018;38(1). https://doi.org/10.1161/ATVBAHA.117.310221
Bonam VR, Supriya P, Reddamma PP. Insulin resistance and hepatic markers in type 2 diabetes mellitus: a cross-sectional study. Eastern Ukrainian Medical Journal. 2024;12(4):886–891. DOI: https://doi.org/10.21272/eumj.2024;12(4):886-891
Khan M, Hashim M, King J, Govender RD, Halla M, Kaabi AlJ. Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. Journal of Epidemiology and Global Health. 2020;10(1):107–111. DOI:10.2991/jegh.k.191028.001
Horton WB, Barrett EJ. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocrine Reviews. 2021;42(1):29–55. DOI:10.1210/endrev/bnaa025
Sun ZJ, Li XQ, Chang D Y, et al. Complement deposition on renal histopathology of patients with diabetic nephropathy. Diabetes Metabolism. 2019; 4(45): 363–368. DOI:10.1016/j.diabet.2018.08.011
Mauricio D, Alonso N, Gratacos M. Chronic diabetes complications: the need to move beyond classical concepts. Trends in Endocrinology & Metabolism. 2020;31 (4):287–295. DOI:10.1016/j.tem.2020.01.007
Yang J, Zhangusuo L. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol. 2022;13:816400. doi:10.3389/fendo.2022.816400
American Diabetes Association’s Standards of Medical Care in Diabetes – 2018. Diabetes Care. 2018; 41(1):13–27. DOI:10.2337/dc18-S002
Hoyer FF, Zhang X, Coppin E, et al. Bone marrow endothelial cells regulate myelopoiesis in diabetes mellitus. Circulation. 2020;3(142):244–258. PMCID: PMC7375017 DOI: 10.1161/CIRCULATIONAHA.120.046038
Brown RB. Diabetes, diabetic complications, and phosphate toxicity: A scoping review. Current diabetes reviews. 2020;7(16):674–689. DOI:10.1161/CIRCULATIONAHA.120.046038
Al-Lawati J. Diabetes mellitus: a local and global public health emergency Oman medical journal. 2017;3(32):177–180. PMID:28584596 DOI: 10.5001/omj.2017.34
Stylianos D, Georgia K, Dimitrios P, et al. Endothelial dysfunction and platelet hyper aggregation in type 2 diabetes mellitus: the era of novel anti-diabetic agents. Current Medicinal Chemistry. 2018;27(34):5663–5672. DOI:10.2174/0929867327666201009143816
Hooten NN, Evans MK. Extracellular vesicles as signaling mediators in type 2 diabetes mellitus. American Journal of Physiology-Cell Physiology. 2020;6(318):1189–1199. DOI:10.1152/ajpcell.00536.2019
Dymkowska D. Oxidative damage of the vascular endothelium in type 2 diabetes – the role of mitochondria and NAD(P)H oxidase. Postepy Biochem. 2016;2(62):116–126. PMID: 28132463
Kotiuzhynska SH, Umanskyi DO. Endotelialna dysfunktsiia v patohenezi sudynnykh katastrof pry sertsevo-sudynnykh zakhvoriuvanniakh. Zaporizhzkyi medychnyi zhurnal. 2017;16(4):525-530. DOI:10.14739/2310-1210.2017.4.105305
Maranta F, Cianfanelli L, Cianflone D. Glycaemic control and vascular complications in diabetes mellitus type 2. Experimental Medicine and Biology. 2021;1307:129–152. DOI: 10.1007/5584_2020_514
Burlaka IA, Mityuryayeva IO, Ipatii NS, Smochko MYu, Kovalchuk IV. Dynamics of the levels of asymmetric dimethylarginine and plasminogen activator inhibitor type 1 in patients with acute ST-segment elevation myocardial infarction and type 2 diabetes mellitus depending on the reperfusion strategy. Clinical and Preventive Medicine. 2024;7:83-88. DOI: https://doi.org/10.31612/2616-4868.7.2024.10