ADVANCES IN REGENERATIVE MEDICINE IN THE TREATMENT OF PREMATURE OVARIAN FAILURE. LITERATURE REVIEW
DOI:
https://doi.org/10.32782/2226-2008-2025-2-13Keywords:
fertility, infertility, reproductive technologies, stem cells, oocytesAbstract
Premature ovarian failure is a clinical syndrome that leads to the loss of ovarian activity before the age of 40. The aim of the work is to collect, analyze, and summarize recent data on the latest strategies to restore fertility in patients with premature ovarian failure, namely transfer or replacement of mitochondria, stem cell transplantation and exosome transplantation. Materials and methods. Analyzed scientific publications in the international electronic scientometric database PubMed by keywords: fertility, infertility, reproductive technologies, stem cells, oocytes. These keywords were combined with other search phrases relevant to the topic.Results. Our analysis and summary of recent data allows us to state the following 1) For the clinical application of the transfer orreplacement of mitochondria, further studies of the mitochondrial interaction as the main effect on the new organism after the replacementof mitochondria are needed, as well as, in particular, the establishment of an acceptable relationship between the mitochondrial DNA haplotypes of the donor and the patient. 2) Stem cell transplantation (into the ovary) is still an experimental treatment for premature ovarian failure. Stem cell transplantation as a potential therapeutic technology for premature ovarian failure requires further study. 3) Transplantation of exosomes is considered a therapeutic strategy for premature ovarian failure in the future.Conclusions: In general, the considered methods of regenerative medicine are the latest strategies to restore fertility in patients with premature ovarian failure.
References
Webber L, Davies M, Anderson R, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum. Reprod. 2016; 31(5): 926–937. DOI: 10.1093/humrep/dew027.
Wu X, Cai H, Kallianpur A, et al. Impact of premature ovarian failure on mortality and morbidity among Chinese women. PLoS One. 2014; 9(3): e89597. DOI: 10.1371/journal.pone.0089597.
Golezar S., Ramezani Tehrani F., Khazaei S., Ebadi A., Keshavarz Z. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis. Climacteric. 2019; 22(4): 403–411. DOI: 10.1080/13697137.2019.1574738.
Zhang S, Zhu D, Mei X, et al. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioact Mater. 2020; 6(7): 1957–1972. DOI: 10.1016/j.bioactmat.2020.12.008.
Mikami Y, Kanemaru K, Okubo Y, et al. Nitric oxide-induced activation of the type 1 ryanodine receptor is critical for epileptic seizure-induced neuronal cell death. EBioMedicine. 2016; 11: 253–261. DOI: 10.1016/j.ebiom.2016.08.020.
Wang S, Sun M, Yu L, Wang Y, Yao Y, Wang D. Niacin inhibits apoptosis and rescues premature ovarian failure. Cell. Physiol. Biochem. 2018; 50(6): 2060–2070. DOI: 10.1159/000495051.
He L, Ling L, Wei T, Wang Y, Xiong Z. Ginsenoside Rg1 improves fertility and reduces ovarian pathological damages in premature ovarian failure model of mice. Exp. Biol. Med. 2017; 242(7): 683–691. DOI: 10.1177/1535370217693323.
Jang H, Na Y, Hong K, et al. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27Kip1 promoter in primordial follicles. J. Pineal Res. 2017; 63(3). DOI: 10.1111/jpi.12432.
Sheikhansari G, Aghebati-Maleki L, Nouri M, Jadidi-Niaragh F, Yousefi M. Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomed. Pharmacother. 2018; 102: 254–262. DOI: 10.1016/j.biopha.2018.03.056.
He Y, Chen D, Yang L, Hou Q, Ma H, Xu X. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res. Ther. 2018; 9(1): 263. DOI: 10.1186/s13287-018-1008-9.
Chen H, Liu Y, Li P, Zhu D. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst. 2018; 110(3): 304–315. DOI: 10.1093/jnci/djx166.
Tang JN, Cores J, Huang K, et al. Concise review: is cardiac cell therapy dead? Embarrassing trial outcomes and new directions for the future. Stem Cells Transl Med. 2018; 7(4): 354–359. DOI: 10.1002/sctm.17-0196.
Herraiz S, Pellicer N, Romeu M, Pellicer A. Treatment potential of bone marrow-derived stem cells in women with diminished ovarian reserves and premature ovarian failure. Curr. Opin. Obstet. Gynecol. 2019; 31(3): 156–162. DOI: 10.1097/GCO.0000000000000531.
Huhtaniemi I, Hovatta O, La Marca A, et al. Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol. Metabol. 2018; 29(6): 400–419. DOI: 10.1016/j.tem.2018.03.010.
Yildirim RM, Seli E. The role of mitochondrial dynamics in oocyte and early embryo development. Semin Cell Dev Biol. 2024; 159–160: 52–61. DOI: 10.1016/j.semcdb.2024.01.007.
Smits MAJ, Schomakers BV, van Weeghel M, et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod. 2023; 38(11): 2208–2220. DOI: 10.1093/humrep/dead177.
Zhang W, Wu F. Effects of adverse fertility-related factors on mitochondrial DNA in the oocyte: a comprehensive review. Reprod Biol Endocrinol. 2023; 21(1): 27. DOI: 10.1186/s12958-023-01078-6.
Seli E. Mitochondrial DNA as a biomarker for in-vitro fertilization outcome. Curr Opin Obstet Gynecol. 2016; 28(3): 158–163. DOI: 10.1097/GCO.0000000000000274.
Victor AR, Brake AJ, Tyndall JC, et al. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil Steril. 2017; 107(1): 34–42. DOI: 10.1016/ j.fertnstert.2016.09.028.
Barritt J, Brenner C, Malter H, Cohen J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod Oxf Engl. 2001; 16(3): 513–516. DOI: 10.1093/humrep/16.3.513.
Fakih MH, El Shmoury M, Szeptycki J, et al. The AUGMENTSM treatment: physician reported outcomes of the initial global patient experience. JFIV Reprod. Med. Genet. 2015; 3: 3. DOI: 10.4172/2375-4508.1000154.
Oktay K, Baltaci V, Sonmezer M, et al. Oogonial precursor cell-derived autologous mitochondria injection to improve outcomes in women with multiple IVF failures due to low oocyte quality: a clinical translation. Reprod Sci. 2015; 22(12): 1612–1617. DOI: 10.1177/1933719115612137.
Labarta E, de Los Santos MJ, Herraiz S, et al. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study. Fertil Steril. 2019; 111(1): 86–96. DOI: 10.1016/j.fertnstert.2018.09.023.
Eyre WA. Mitochondrial Replacement Therapy: are mito-nuclear interactions likely to be a problem? Genetics. 2017; 205(4): 1365–1372. DOI: 10.1534/genetics.116.196436.
Dobler R, Dowling DK, Morrow EH, Reinhardt K. A systematic review and meta-analysis reveals pervasive effects of germline mitochondrial replacement on components of health. Hum Reprod Update. 2018; 24(5): 519–534. DOI: 10.1093/ humupd/dmy018.
Fazeli Z, Abedindo A, Omrani MD, Ghaderian SMH. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: a systematic review. Stem Cell Rev Rep. 2018; 14(1): 1–12. DOI: 10.1007/s12015-017-9765-x.
Te L, Yongyi H, Jian Z, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev. 2014; 23(13): 1548–57. DOI: 10.1089/scd.2013.0371.
Rongxia L, Xiaoyu Z, Zhenhai F, et al. Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther. 2019; 10(1): 299. DOI: 10.1186/ s13287-019-1315-9.
Penghui F, Pingping L, Tan J. Human menstrual blood-derived stromal cells promote recovery of premature ovarian insufficiency via regulating the ECM-dependent FAK/AKT signaling. Stem Cell Rev Rep. 2019; 15(2): 241–55. DOI: 10.1007/s12015-018-9867-0.
He Y, Dongmei C, Lingling Y, et al. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res Ther. 2018; 9(1): 263. DOI: 10.1186/s13287-018-1008-9.
Wang Z, Wang Y, Yang T, Jing L, Yang X. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther. 2017; 8(1): 11. DOI: 10.1186/s13287-016-0458-1.
Lai D, Wang F, Yao X, et al. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. J Transl Med. 2015; 13: 155. DOI: 10.1186/s12967-015-0516-y.
Chon S, Umair Z, Yoon M. Premature Ovarian Insufficiency: Past, Present, and Future. Front Cell Dev Biol. 2021; 9: 672890. 10. DOI: 10.3389/fcell.2021.672890.
Mirzaei H, Sahebkar A, Sichani LS, et al. Therapeutic application of multipotent stem cells. J Cell Physiol. 2018; 233(4): 2815–2823. DOI: 10.1002/jcp.25990.
Fu YX, Ji J, Shan F, Li J, Hu R. Human mesenchymal stem cell treatment of premature ovarian failure: new challenges and opportunities. Stem Cell Res Ther. 2021; 12(1): 161. DOI: 10.1186/s13287-021-02212-0.
Mohamad Yusoff F, Higashi Y. Mesenchymal Stem/Stromal Cells for Therapeutic Angiogenesis. Cells. 2023; 12(17): 2162. DOI: 10.3390/cells12172162.
Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014; 23(9): 1045–59. DOI: 10.3727/096368913X667709.
Liu J, Zhang H, Zhang Y, et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Mol Cells. 2014; 37(12): 865–872. DOI: 10.14348/molcells.2014.0145.
Shafei AE, Ali MA, Ghanem HG, et al. Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. J Gene Med. 2017; 19(12). DOI: 10.1002/jgm.2995.
Wang J, Chen Z, Sun M, et al. Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell. 2020; 64: 101330. DOI: 10.1016/j.tice.2020.101330.
Yoon SY. Mesenchymal stem cells for restoration of ovarian function. Clin Exp Reprod Med. 2019; 46(1): 1–7. DOI: 10.5653/cerm.2019.46.1.1.
Edessy M, Hosni HN, Shady Y, et al. Autologous stem cells therapy, The first baby of idiopathic premature ovarian failure. Acta Medica Int. 2016; 3(1): 19. DOI: 10.5530/ami.2016.1.7.
Gabr H, Wael A, Ahmed EG. Autologous stem cell transplantation in patients with idiopathic premature ovarian failure. J Tissue Sci Eng. 2016; 7(3). DOI: 10.4172/2157-7552.C1.030.
Herraiz S, Romeu M, Buigues A, et al. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil Steril. 2018; 110(3): 496–505. DOI: 10.1016/j.fertnstert.2018.04.025.
Gupta S, Lodha P, Karthick MS, Tandulwadkar SR. Role of autologous bone marrow-derived stem cell therapy for follicular recruitment in premature ovarian insufficiency: review of literature and a case report of world’s first baby with ovarian autologous stem cell therapy in a perimenopausal woman of age 45 year. J Hum Reprod Sci. 2018; 11(2): 125–130. DOI: 10.4103/jhrs.JHRS_57_18.
Sfakianoudis K, Rapani A, Grigoriadis S, et al. Novel Approaches in Addressing Ovarian Insufficiency in 2019: Are We There Yet? Cell Transplant. 2020; 29: 963689720926154. DOI: 10.1177/0963689720926154.
Sfakianoudis K, Simopoulou M, Nitsos N, et al. Autologous platelet-rich plasma treatment enables pregnancy for a woman in premature menopause. J Clin Med. 2018; 8(1):1. DOI: 10.3390/jcm8010001.
Bidarimath M, Khalaj K, Kridli RT, et al. Extracellular vesicle mediated intercellular communication at the porcine maternal- fetal interface: A new paradigm for conceptus-endometrial cross-talk. Sci Rep. 2017; 12: 7: 40476. DOI: 10.1038/srep40476.
Isabel HD, Chen Yu Z, Antonio VP. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab. 2017; 28(1): 3–18. DOI: 10.1016/j.tem.2016.10.003.
Zhang S, Huang B, Su P, et al. Concentrated exosomes from menstrual blood-derived stromal cells improves ovarian activity in a rat model of premature ovarian insufficiency. Stem Cell Res. Ther. 2021; 12(1): 178. DOI: 10.1186/s13287-021-02255-3.
Ding C, Qian C, Hou S, et al. Exosomal miRNA-320a is released from hAMSCs and regulates SIRT4 to prevent reactive oxygen species generation in POI. Mol. Ther. Nucleic Acids. 2020; 21: 37–50. DOI: 10.1016/j.omtn.2020.05.013.
Ding C, Zhu L, Shen H, et al. Exosomal miRNA-17-5p derived from human umbilical cord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7. Stem Cells. 2020; 38 : 1137–1148. DOI: 10.1002/stem.3204.
Liu H, Wei X, Sha Y, et al. Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention. J. Ovarian Res. 2020; 13: 114. DOI: 10.1186/s13048-020-00716-6.
Yang W, Zhang J, Xu B, et al. HucMSC-derived exosomes mitigate the age-related retardation of fertility in female mice. Mol. Ther. 2020; 28: 1200–1213. DOI: 10.1016/j.ymthe.2020.02.003.
Chen C, Li S, Hu C, et al. Protective effects of puerarin on premature ovarian failure via regulation of Wnt/β-catenin signaling pathway and oxidative stress. Reprod. Sci. 2021; 28: 982–990. DOI: 10.1007/s43032-020-00325-0).
da Silveira JC, Andrade GM, Del Collado M, et al. Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS One. 2017; 12(6): e0179451. DOI: 10.1371/ journal.pone.0179451.